Cargando…
Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory
Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learne...
Autores principales: | Yang, Haimin, Pan, Zhisong, Tao, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748146/ https://www.ncbi.nlm.nih.gov/pubmed/29391864 http://dx.doi.org/10.1155/2017/9478952 |
Ejemplares similares
-
Novel robust time series analysis for long-term and short-term prediction
por: Okamura, Hiroshi, et al.
Publicado: (2021) -
An Adaptive Moment estimation method for online AUC maximization
por: Liu, Xin, et al.
Publicado: (2019) -
Prediction of Time-Series Transcriptomic Gene Expression Based on Long Short-Term Memory with Empirical Mode Decomposition
por: Zhou, Ying, et al.
Publicado: (2022) -
Two robust long short-term memory frameworks for trading stocks
por: Fister, Dušan, et al.
Publicado: (2021) -
An adaptive particle swarm optimization-based hybrid long short-term memory model for stock price time series forecasting
por: Kumar, Gourav, et al.
Publicado: (2022)