Cargando…
Machine learning shows association between genetic variability in PPARG and cerebral connectivity in preterm infants
Preterm infants show abnormal structural and functional brain development, and have a high risk of long-term neurocognitive problems. The molecular and cellular mechanisms involved are poorly understood, but novel methods now make it possible to address them by examining the relationship between com...
Autores principales: | Krishnan, Michelle L., Wang, Zi, Aljabar, Paul, Ball, Gareth, Mirza, Ghazala, Saxena, Alka, Counsell, Serena J., Hajnal, Joseph V., Montana, Giovanni, Edwards, A. David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748164/ https://www.ncbi.nlm.nih.gov/pubmed/29229843 http://dx.doi.org/10.1073/pnas.1704907114 |
Ejemplares similares
-
Machine-learning to characterise neonatal functional connectivity in the preterm brain
por: Ball, G., et al.
Publicado: (2016) -
Possible relationship between common genetic variation and white matter development in a pilot study of preterm infants
por: Krishnan, Michelle L., et al.
Publicado: (2016) -
The Effect of Preterm Birth on Thalamic and Cortical Development
por: Ball, Gareth, et al.
Publicado: (2012) -
A tract-specific approach to assessing white matter in preterm infants
por: Pecheva, Diliana, et al.
Publicado: (2017) -
Polygenic risk for neuropsychiatric disease and vulnerability to abnormal deep grey matter development
por: Cullen, Harriet, et al.
Publicado: (2019)