Cargando…
Engineered (Lys)(6)-Tagged Recombinant Sulfide-Reactive Hemoglobin I for Covalent Immobilization at Multiwalled Carbon Nanotubes
[Image: see text] The recombinant HbI was fused with a poly-Lys tag ((Lys)(6)-tagged rHbI) for specific-site covalent immobilization on two carbon nanotube transducer surfaces, i.e., powder and vertically aligned carbon nanotubes. The immobilization was achieved by following two steps: (1) generatio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748273/ https://www.ncbi.nlm.nih.gov/pubmed/29302632 http://dx.doi.org/10.1021/acsomega.7b01500 |
_version_ | 1783289376264945664 |
---|---|
author | Díaz-Ayala, Ramonita Torres-González, Lisa Pietri, Ruth Cabrera, Carlos R. López-Garriga, Juan |
author_facet | Díaz-Ayala, Ramonita Torres-González, Lisa Pietri, Ruth Cabrera, Carlos R. López-Garriga, Juan |
author_sort | Díaz-Ayala, Ramonita |
collection | PubMed |
description | [Image: see text] The recombinant HbI was fused with a poly-Lys tag ((Lys)(6)-tagged rHbI) for specific-site covalent immobilization on two carbon nanotube transducer surfaces, i.e., powder and vertically aligned carbon nanotubes. The immobilization was achieved by following two steps: (1) generation of amine-reactive ester from the carboxylic acid groups of the surfaces and (2) coupling these groups with the amine groups of the Lys-tag. We analyzed the immobilization process using different conditions and techniques to differentiate protein covalent attachment from physical adsorption. Fourier transform infrared microspectroscopy data showed a 14 cm(–1) displacement of the protein’s amide I and amide II peaks to lower the frequency after immobilization. This result indicates a covalent attachment of the protein to the surface. Differences in the morphology of the carbon substrate with and without (Lys)(6)-tagged rHbI confirmed protein immobilization, as observed by transmission electron microscopy. The electrochemical studies, which were performed to evaluate the redox center of the immobilized protein, show a confinement suitable for an efficient electron transfer system. More importantly, the electrochemical studies allowed determination of a redox potential for the new (Lys)(6)-tagged rHbI. The data show that the protein is electrochemically active and retains its biological activity toward H(2)S. |
format | Online Article Text |
id | pubmed-5748273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-57482732018-01-02 Engineered (Lys)(6)-Tagged Recombinant Sulfide-Reactive Hemoglobin I for Covalent Immobilization at Multiwalled Carbon Nanotubes Díaz-Ayala, Ramonita Torres-González, Lisa Pietri, Ruth Cabrera, Carlos R. López-Garriga, Juan ACS Omega [Image: see text] The recombinant HbI was fused with a poly-Lys tag ((Lys)(6)-tagged rHbI) for specific-site covalent immobilization on two carbon nanotube transducer surfaces, i.e., powder and vertically aligned carbon nanotubes. The immobilization was achieved by following two steps: (1) generation of amine-reactive ester from the carboxylic acid groups of the surfaces and (2) coupling these groups with the amine groups of the Lys-tag. We analyzed the immobilization process using different conditions and techniques to differentiate protein covalent attachment from physical adsorption. Fourier transform infrared microspectroscopy data showed a 14 cm(–1) displacement of the protein’s amide I and amide II peaks to lower the frequency after immobilization. This result indicates a covalent attachment of the protein to the surface. Differences in the morphology of the carbon substrate with and without (Lys)(6)-tagged rHbI confirmed protein immobilization, as observed by transmission electron microscopy. The electrochemical studies, which were performed to evaluate the redox center of the immobilized protein, show a confinement suitable for an efficient electron transfer system. More importantly, the electrochemical studies allowed determination of a redox potential for the new (Lys)(6)-tagged rHbI. The data show that the protein is electrochemically active and retains its biological activity toward H(2)S. American Chemical Society 2017-12-15 /pmc/articles/PMC5748273/ /pubmed/29302632 http://dx.doi.org/10.1021/acsomega.7b01500 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Díaz-Ayala, Ramonita Torres-González, Lisa Pietri, Ruth Cabrera, Carlos R. López-Garriga, Juan Engineered (Lys)(6)-Tagged Recombinant Sulfide-Reactive Hemoglobin I for Covalent Immobilization at Multiwalled Carbon Nanotubes |
title | Engineered (Lys)(6)-Tagged Recombinant
Sulfide-Reactive Hemoglobin I for Covalent Immobilization at Multiwalled
Carbon Nanotubes |
title_full | Engineered (Lys)(6)-Tagged Recombinant
Sulfide-Reactive Hemoglobin I for Covalent Immobilization at Multiwalled
Carbon Nanotubes |
title_fullStr | Engineered (Lys)(6)-Tagged Recombinant
Sulfide-Reactive Hemoglobin I for Covalent Immobilization at Multiwalled
Carbon Nanotubes |
title_full_unstemmed | Engineered (Lys)(6)-Tagged Recombinant
Sulfide-Reactive Hemoglobin I for Covalent Immobilization at Multiwalled
Carbon Nanotubes |
title_short | Engineered (Lys)(6)-Tagged Recombinant
Sulfide-Reactive Hemoglobin I for Covalent Immobilization at Multiwalled
Carbon Nanotubes |
title_sort | engineered (lys)(6)-tagged recombinant
sulfide-reactive hemoglobin i for covalent immobilization at multiwalled
carbon nanotubes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748273/ https://www.ncbi.nlm.nih.gov/pubmed/29302632 http://dx.doi.org/10.1021/acsomega.7b01500 |
work_keys_str_mv | AT diazayalaramonita engineeredlys6taggedrecombinantsulfidereactivehemoglobiniforcovalentimmobilizationatmultiwalledcarbonnanotubes AT torresgonzalezlisa engineeredlys6taggedrecombinantsulfidereactivehemoglobiniforcovalentimmobilizationatmultiwalledcarbonnanotubes AT pietriruth engineeredlys6taggedrecombinantsulfidereactivehemoglobiniforcovalentimmobilizationatmultiwalledcarbonnanotubes AT cabreracarlosr engineeredlys6taggedrecombinantsulfidereactivehemoglobiniforcovalentimmobilizationatmultiwalledcarbonnanotubes AT lopezgarrigajuan engineeredlys6taggedrecombinantsulfidereactivehemoglobiniforcovalentimmobilizationatmultiwalledcarbonnanotubes |