Cargando…

Intracellular hepatitis B virus increases hepatic cholesterol deposition in alcoholic fatty liver via hepatitis B core protein

Hepatitis B virus (HBV) infection is a prevalent infectious disease with serious outcomes like chronic and acute hepatitis, cirrhosis, and hepatocellular carcinoma. However, the metabolic alteration by HBV is rarely taken into consideration. With the high prevalence of alcohol consumption and chroni...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yaqi, Wu, Ting, Hu, Danqing, Weng, Xinxin, Wang, Xiaojing, Chen, Pei-Jer, Luo, Xiaoping, Wang, Hongwu, Ning, Qin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Biochemistry and Molecular Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748497/
https://www.ncbi.nlm.nih.gov/pubmed/29133292
http://dx.doi.org/10.1194/jlr.M079533
Descripción
Sumario:Hepatitis B virus (HBV) infection is a prevalent infectious disease with serious outcomes like chronic and acute hepatitis, cirrhosis, and hepatocellular carcinoma. However, the metabolic alteration by HBV is rarely taken into consideration. With the high prevalence of alcohol consumption and chronic HBV infection, their overlap is assumed to be an increasing latent hazard; although the extent has not been calculated. Moreover, the impact of chronic alcohol consumption combined with HBV on cholesterol metabolism is unknown. Six-week-old male FVB/Ncrl mice were hydrodynamically injected with a pGEM-4Z-1.3HBV vector and then fed an ethanol diet for 6 weeks. Serum biomarkers and liver histology, liver cholesterol levels, and cholesterol metabolism-related molecules were measured. In vitro assays with HBx, hepatitis B surface (HBs), or hepatitis B core (HBc) protein expression in HepG2 cells costimulated with ethanol were conducted to assess the cholesterol metabolism. HBV expression synergistically increased cholesterol deposition in the setting of alcoholic fatty liver. The increase of intrahepatic cholesterol was due to metabolic alteration in cholesterol metabolism, including increased cholesterol synthesis, decreased cholesterol degradation, and impaired cholesterol uptake. Overexpression of HBV component HBc, but not HBs or HBx, selectively promoted the hepatocellular cholesterol level.