Cargando…
Phylogenetic Analysis of the SNORD116 Locus
The SNORD116 small nucleolar RNA locus (SNORD116@) is contained within the long noncoding RNA host gene SNHG14 on human chromosome 15q11-q13. The SNORD116 locus is a cluster of 28 or more small nucleolar (sno) RNAs; C/D box (SNORDs). Individual RNAs within the cluster are tandem, highly similar sequ...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748676/ https://www.ncbi.nlm.nih.gov/pubmed/29189765 http://dx.doi.org/10.3390/genes8120358 |
Sumario: | The SNORD116 small nucleolar RNA locus (SNORD116@) is contained within the long noncoding RNA host gene SNHG14 on human chromosome 15q11-q13. The SNORD116 locus is a cluster of 28 or more small nucleolar (sno) RNAs; C/D box (SNORDs). Individual RNAs within the cluster are tandem, highly similar sequences, referred to as SNORD116-1, SNORD116-2, etc., with the entire set referred to as SNORD116@. There are also related SNORD116 loci on other chromosomes, and these additional loci are conserved among primates. Inherited chromosomal 15q11-q13 deletions, encompassing the SNORD116@ locus, are causative for the paternally-inherited/maternally-imprinted genetic condition, Prader–Willi syndrome (PWS). Using in silico tools, along with molecular-based and sequenced-based confirmation, phylogenetic analysis of the SNORD116@ locus was performed. The consensus sequence for the SNORD116@ snoRNAs from various species was determined both for all the SNORD116 snoRNAs, as well as those grouped using sequence and location according to a human grouping convention. The implications of these findings are put in perspective for studying SNORD116 in patients with inherited Prader–Willi syndrome, as well as model organisms. |
---|