Cargando…

Proliferation Cycle Causes Age Dependent Mitochondrial Deficiencies and Contributes to the Aging of Stem Cells

In addition to chronological aging, stem cells are also subject to proliferative aging during the adult life span. However, the consequences of proliferative cycle and their contributions to stem cells aging have not been well investigated. Using Drosophila female germ line stem cells as a model, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Qiuting, Zhang, Fan, Xu, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748715/
https://www.ncbi.nlm.nih.gov/pubmed/29257059
http://dx.doi.org/10.3390/genes8120397
Descripción
Sumario:In addition to chronological aging, stem cells are also subject to proliferative aging during the adult life span. However, the consequences of proliferative cycle and their contributions to stem cells aging have not been well investigated. Using Drosophila female germ line stem cells as a model, we found that the replication cycle leads to the age dependent decline of female fecundity, and is a major factor causing developmental abnormalities in the progeny of old females. The proliferative aging does not cause telomere shortening, but causes an accumulation of mitochondrial DNA (mtDNA) mutations or rearrangements at the control region. We propose that damaging mutations on mtDNA caused by accumulation of proliferation cycles in aged stem cells may disrupt mitochondrial respiration chain and impair mtDNA replication and represent a conserved mechanism underlying stem cell aging.