Cargando…
Differentiation of the Follicular Neoplasm on the Gray-Scale US by Image Selection Subsampling along with the Marginal Outline Using Convolutional Neural Network
We conducted differentiations between thyroid follicular adenoma and carcinoma for 8-bit bitmap ultrasonography (US) images utilizing a deep-learning approach. For the data sets, we gathered small-boxed selected images adjacent to the marginal outline of nodules and applied a convolutional neural ne...
Autores principales: | Seo, Jeong-Kweon, Kim, Young Jae, Kim, Kwang Gi, Shin, Ilah, Shin, Jung Hee, Kwak, Jin Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749320/ https://www.ncbi.nlm.nih.gov/pubmed/29527533 http://dx.doi.org/10.1155/2017/3098293 |
Ejemplares similares
-
Application of machine learning to ultrasound images to differentiate follicular neoplasms of the thyroid gland
por: Shin, Ilah, et al.
Publicado: (2020) -
Subsampling
por: Politis, Dimitris N, et al.
Publicado: (1999) -
Subsampling scaling
por: Levina, A., et al.
Publicado: (2017) -
Padding, borders, outlines, and margins in CSS
por: Meyer, Eric A
Publicado: (2015) -
Ultrasonographic and cytologic assessments of follicular neoplasms of the thyroid: Predictive features differentiating follicular carcinoma from follicular adenoma
por: Ahn, Hye Shin, et al.
Publicado: (2022)