Cargando…

Tree-based Methods for Characterizing Tumor Density Heterogeneity

Solid lesions emerge within diverse tissue environments making their characterization and diagnosis a challenge. With the advent of cancer radiomics, a variety of techniques have been developed to transform images into quantifiable feature sets producing summary statistics that describe the morpholo...

Descripción completa

Detalles Bibliográficos
Autores principales: Shoemaker, Katherine, Hobbs, Brian P., Bharath, Karthik, Ng, Chaan S., Baladandayuthapani, Veerabhadran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749399/
https://www.ncbi.nlm.nih.gov/pubmed/29218883
Descripción
Sumario:Solid lesions emerge within diverse tissue environments making their characterization and diagnosis a challenge. With the advent of cancer radiomics, a variety of techniques have been developed to transform images into quantifiable feature sets producing summary statistics that describe the morphology and texture of solid masses. Relying on empirical distribution summaries as well as grey-level co-occurrence statistics, several approaches have been devised to characterize tissue density heterogeneity. This article proposes a novel decision-tree based approach which quantifies the tissue density heterogeneity of a given lesion through its resultant distribution of tree-structured dissimilarity metrics computed with least common ancestor trees under repeated pixel re-sampling. The methodology, based on statistics derived from Galton-Watson trees, produces metrics that are minimally correlated with existing features, adding new information to the feature space and improving quantitative characterization of the extent to which a CT image conveys heterogeneous density distribution. We demonstrate its practical application through a diagnostic study of adrenal lesions. Integrating the proposed with existing features identifies classifiers of three important lesion types; malignant from benign (AUC = 0.78), functioning from non-functioning (AUC = 0.93) and calcified from non-calcified (AUC of 1).