Cargando…
Tree-based Methods for Characterizing Tumor Density Heterogeneity
Solid lesions emerge within diverse tissue environments making their characterization and diagnosis a challenge. With the advent of cancer radiomics, a variety of techniques have been developed to transform images into quantifiable feature sets producing summary statistics that describe the morpholo...
Autores principales: | Shoemaker, Katherine, Hobbs, Brian P., Bharath, Karthik, Ng, Chaan S., Baladandayuthapani, Veerabhadran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749399/ https://www.ncbi.nlm.nih.gov/pubmed/29218883 |
Ejemplares similares
-
DEMARCATE: Density-based magnetic resonance image clustering for assessing tumor heterogeneity in cancer
por: Saha, Abhijoy, et al.
Publicado: (2016) -
SPARTIN: a Bayesian method for the quantification and characterization of cell type interactions in spatial pathology data
por: Osher, Nathaniel, et al.
Publicado: (2023) -
Inferring Stable Acquisition Durations for Applications of Perfusion Imaging in Oncology
por: Hobbs, Brian P, et al.
Publicado: (2015) -
Bayesian methods for expression-based integration of various types of genomics data
por: Jennings, Elizabeth M, et al.
Publicado: (2013) -
A Bayesian Nonparametric Approach for Functional Data Classification with Application to Hepatic Tissue Characterization
por: Fronczyk, Kassandra M., et al.
Publicado: (2016)