Cargando…
Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression()
Genome-wide association studies (GWAS) have been successful in facilitating the understanding of genetic architecture behind human diseases, but this approach faces many challenges. To identify disease-related loci with modest to weak effect size, GWAS requires very large sample sizes, which can be...
Autores principales: | Li, Binglan, Verma, Shefali S., Veturi, Yogasudha C., Verma, Anurag, Bradford, Yuki, Haas, David W., Ritchie, Marylyn D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749400/ https://www.ncbi.nlm.nih.gov/pubmed/29218904 |
Ejemplares similares
-
Evaluation of Sex-Aware PrediXcan Models for Predicting Gene Expression
por: Mahoney, Emily, et al.
Publicado: (2022) -
Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies
por: Li, Binglan, et al.
Publicado: (2019) -
Accuracy of Gene Expression Prediction From Genotype Data With PrediXcan Varies Across and Within Continental Populations
por: Mikhaylova, Anna V., et al.
Publicado: (2019) -
Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models
por: Zeng, Ping, et al.
Publicado: (2017) -
Tissue specificity-aware TWAS (TSA-TWAS) framework identifies novel associations with metabolic, immunologic, and virologic traits in HIV-positive adults
por: Li, Binglan, et al.
Publicado: (2021)