Cargando…
High-Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac Function
In vivo imaging has provided a unique framework for studying pathological progression in various mouse models of cardiac disease. Although conventional short-axis motion-mode (SAX MM) ultrasound and cine magnetic resonance imaging (MRI) are two of the most prevalent strategies used for quantifying c...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749424/ https://www.ncbi.nlm.nih.gov/pubmed/29308434 http://dx.doi.org/10.18383/j.tom.2017.00016 |
_version_ | 1783289584396795904 |
---|---|
author | Damen, Frederick W. Berman, Alycia G. Soepriatna, Arvin H. Ellis, Jessica M. Buttars, Stephen D. Aasa, Kristiina L. Goergen, Craig J. |
author_facet | Damen, Frederick W. Berman, Alycia G. Soepriatna, Arvin H. Ellis, Jessica M. Buttars, Stephen D. Aasa, Kristiina L. Goergen, Craig J. |
author_sort | Damen, Frederick W. |
collection | PubMed |
description | In vivo imaging has provided a unique framework for studying pathological progression in various mouse models of cardiac disease. Although conventional short-axis motion-mode (SAX MM) ultrasound and cine magnetic resonance imaging (MRI) are two of the most prevalent strategies used for quantifying cardiac function, there are few notable limitations including imprecision, inaccuracy, and geometric assumptions with ultrasound, or large and costly systems with substantial infrastructure requirements with MRI. Here we present an automated 4-dimensional ultrasound (4DUS) technique that provides comparable information to cine MRI through spatiotemporally synced imaging of cardiac motion. Cardiac function metrics derived from SAX MM, cine MRI, and 4DUS data show close agreement between cine MRI and 4DUS but overestimations by SAX MM. The inclusion of a mouse model of cardiac hypertrophy further highlights the precision of 4DUS compared with that of SAX MM, with narrower groupings of cardiac metrics based on health status. Our findings suggest that murine 4DUS can be used as a reliable, accurate, and cost-effective technique for longitudinal studies of cardiac function and disease progression. |
format | Online Article Text |
id | pubmed-5749424 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Grapho Publications, LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-57494242018-07-24 High-Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac Function Damen, Frederick W. Berman, Alycia G. Soepriatna, Arvin H. Ellis, Jessica M. Buttars, Stephen D. Aasa, Kristiina L. Goergen, Craig J. Tomography Advances in Brief In vivo imaging has provided a unique framework for studying pathological progression in various mouse models of cardiac disease. Although conventional short-axis motion-mode (SAX MM) ultrasound and cine magnetic resonance imaging (MRI) are two of the most prevalent strategies used for quantifying cardiac function, there are few notable limitations including imprecision, inaccuracy, and geometric assumptions with ultrasound, or large and costly systems with substantial infrastructure requirements with MRI. Here we present an automated 4-dimensional ultrasound (4DUS) technique that provides comparable information to cine MRI through spatiotemporally synced imaging of cardiac motion. Cardiac function metrics derived from SAX MM, cine MRI, and 4DUS data show close agreement between cine MRI and 4DUS but overestimations by SAX MM. The inclusion of a mouse model of cardiac hypertrophy further highlights the precision of 4DUS compared with that of SAX MM, with narrower groupings of cardiac metrics based on health status. Our findings suggest that murine 4DUS can be used as a reliable, accurate, and cost-effective technique for longitudinal studies of cardiac function and disease progression. Grapho Publications, LLC 2017-12 /pmc/articles/PMC5749424/ /pubmed/29308434 http://dx.doi.org/10.18383/j.tom.2017.00016 Text en © 2017 The Authors. Published by Grapho Publications, LLC http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Advances in Brief Damen, Frederick W. Berman, Alycia G. Soepriatna, Arvin H. Ellis, Jessica M. Buttars, Stephen D. Aasa, Kristiina L. Goergen, Craig J. High-Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac Function |
title | High-Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac Function |
title_full | High-Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac Function |
title_fullStr | High-Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac Function |
title_full_unstemmed | High-Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac Function |
title_short | High-Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac Function |
title_sort | high-frequency 4-dimensional ultrasound (4dus): a reliable method for assessing murine cardiac function |
topic | Advances in Brief |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749424/ https://www.ncbi.nlm.nih.gov/pubmed/29308434 http://dx.doi.org/10.18383/j.tom.2017.00016 |
work_keys_str_mv | AT damenfrederickw highfrequency4dimensionalultrasound4dusareliablemethodforassessingmurinecardiacfunction AT bermanalyciag highfrequency4dimensionalultrasound4dusareliablemethodforassessingmurinecardiacfunction AT soepriatnaarvinh highfrequency4dimensionalultrasound4dusareliablemethodforassessingmurinecardiacfunction AT ellisjessicam highfrequency4dimensionalultrasound4dusareliablemethodforassessingmurinecardiacfunction AT buttarsstephend highfrequency4dimensionalultrasound4dusareliablemethodforassessingmurinecardiacfunction AT aasakristiinal highfrequency4dimensionalultrasound4dusareliablemethodforassessingmurinecardiacfunction AT goergencraigj highfrequency4dimensionalultrasound4dusareliablemethodforassessingmurinecardiacfunction |