Cargando…
Beyond Retinal Layers: A Deep Voting Model for Automated Geographic Atrophy Segmentation in SD-OCT Images
PURPOSE: To automatically and accurately segment geographic atrophy (GA) in spectral-domain optical coherence tomography (SD-OCT) images by constructing a voting system with deep neural networks without the use of retinal layer segmentation. METHODS: An automatic GA segmentation method for SD-OCT im...
Autores principales: | Ji, Zexuan, Chen, Qiang, Niu, Sijie, Leng, Theodore, Rubin, Daniel L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749649/ https://www.ncbi.nlm.nih.gov/pubmed/29302382 http://dx.doi.org/10.1167/tvst.7.1.1 |
Ejemplares similares
-
Automated Segmentability Index for Layer Segmentation of Macular SD-OCT Images
por: Lee, Kyungmoo, et al.
Publicado: (2016) -
Repeatability and Reproducibility of Eight Macular Intra-Retinal Layer Thicknesses Determined by an Automated Segmentation Algorithm Using Two SD-OCT Instruments
por: Liu, Xinting, et al.
Publicado: (2014) -
Subretinal Drusenoid Deposits and Photoreceptor Loss Detecting Global and Local Progression of Geographic Atrophy by SD-OCT Imaging
por: Reiter, Gregor S., et al.
Publicado: (2020) -
An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images
por: Sun, Zhuli, et al.
Publicado: (2016) -
Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images
por: Vermeer, K. A., et al.
Publicado: (2011)