Cargando…
A novel image registration approach via combining local features and geometric invariants
Image registration is widely used in many fields, but the adaptability of the existing methods is limited. This work proposes a novel image registration method with high precision for various complex applications. In this framework, the registration problem is divided into two stages. First, we dete...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749792/ https://www.ncbi.nlm.nih.gov/pubmed/29293595 http://dx.doi.org/10.1371/journal.pone.0190383 |
_version_ | 1783289637911920640 |
---|---|
author | Lu, Yan Gao, Kun Zhang, Tinghua Xu, Tingfa |
author_facet | Lu, Yan Gao, Kun Zhang, Tinghua Xu, Tingfa |
author_sort | Lu, Yan |
collection | PubMed |
description | Image registration is widely used in many fields, but the adaptability of the existing methods is limited. This work proposes a novel image registration method with high precision for various complex applications. In this framework, the registration problem is divided into two stages. First, we detect and describe scale-invariant feature points using modified computer vision-oriented fast and rotated brief (ORB) algorithm, and a simple method to increase the performance of feature points matching is proposed. Second, we develop a new local constraint of rough selection according to the feature distances. Evidence shows that the existing matching techniques based on image features are insufficient for the images with sparse image details. Then, we propose a novel matching algorithm via geometric constraints, and establish local feature descriptions based on geometric invariances for the selected feature points. Subsequently, a new price function is constructed to evaluate the similarities between points and obtain exact matching pairs. Finally, we employ the progressive sample consensus method to remove wrong matches and calculate the space transform parameters. Experimental results on various complex image datasets verify that the proposed method is more robust and significantly reduces the rate of false matches while retaining more high-quality feature points. |
format | Online Article Text |
id | pubmed-5749792 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57497922018-01-26 A novel image registration approach via combining local features and geometric invariants Lu, Yan Gao, Kun Zhang, Tinghua Xu, Tingfa PLoS One Research Article Image registration is widely used in many fields, but the adaptability of the existing methods is limited. This work proposes a novel image registration method with high precision for various complex applications. In this framework, the registration problem is divided into two stages. First, we detect and describe scale-invariant feature points using modified computer vision-oriented fast and rotated brief (ORB) algorithm, and a simple method to increase the performance of feature points matching is proposed. Second, we develop a new local constraint of rough selection according to the feature distances. Evidence shows that the existing matching techniques based on image features are insufficient for the images with sparse image details. Then, we propose a novel matching algorithm via geometric constraints, and establish local feature descriptions based on geometric invariances for the selected feature points. Subsequently, a new price function is constructed to evaluate the similarities between points and obtain exact matching pairs. Finally, we employ the progressive sample consensus method to remove wrong matches and calculate the space transform parameters. Experimental results on various complex image datasets verify that the proposed method is more robust and significantly reduces the rate of false matches while retaining more high-quality feature points. Public Library of Science 2018-01-02 /pmc/articles/PMC5749792/ /pubmed/29293595 http://dx.doi.org/10.1371/journal.pone.0190383 Text en © 2018 Lu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lu, Yan Gao, Kun Zhang, Tinghua Xu, Tingfa A novel image registration approach via combining local features and geometric invariants |
title | A novel image registration approach via combining local features and geometric invariants |
title_full | A novel image registration approach via combining local features and geometric invariants |
title_fullStr | A novel image registration approach via combining local features and geometric invariants |
title_full_unstemmed | A novel image registration approach via combining local features and geometric invariants |
title_short | A novel image registration approach via combining local features and geometric invariants |
title_sort | novel image registration approach via combining local features and geometric invariants |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749792/ https://www.ncbi.nlm.nih.gov/pubmed/29293595 http://dx.doi.org/10.1371/journal.pone.0190383 |
work_keys_str_mv | AT luyan anovelimageregistrationapproachviacombininglocalfeaturesandgeometricinvariants AT gaokun anovelimageregistrationapproachviacombininglocalfeaturesandgeometricinvariants AT zhangtinghua anovelimageregistrationapproachviacombininglocalfeaturesandgeometricinvariants AT xutingfa anovelimageregistrationapproachviacombininglocalfeaturesandgeometricinvariants AT luyan novelimageregistrationapproachviacombininglocalfeaturesandgeometricinvariants AT gaokun novelimageregistrationapproachviacombininglocalfeaturesandgeometricinvariants AT zhangtinghua novelimageregistrationapproachviacombininglocalfeaturesandgeometricinvariants AT xutingfa novelimageregistrationapproachviacombininglocalfeaturesandgeometricinvariants |