Cargando…
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction
Predicting novel microRNA (miRNA)-disease associations is clinically significant due to miRNAs’ potential roles of diagnostic biomarkers and therapeutic targets for various human diseases. Previous studies have demonstrated the viability of utilizing different types of biological data to computation...
Autores principales: | Chen, Xing, Huang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749861/ https://www.ncbi.nlm.nih.gov/pubmed/29253885 http://dx.doi.org/10.1371/journal.pcbi.1005912 |
Ejemplares similares
-
A Subspace Based Transfer Joint Matching with Laplacian Regularization for Visual Domain Adaptation
por: Sanodiya, Rakesh Kumar, et al.
Publicado: (2020) -
LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe–Disease Association prediction
por: Wang, Fan, et al.
Publicado: (2017) -
Combining non-negative matrix factorization with graph Laplacian regularization for predicting drug-miRNA associations based on multi-source information fusion
por: Wang, Mei-Neng, et al.
Publicado: (2023) -
Regularized RKHS-Based Subspace Learning for Motor Imagery Classification
por: Jiang, Linzhi, et al.
Publicado: (2022) -
Regularized Laplacian determinants of self-similar fractals
por: Chen, Joe P., et al.
Publicado: (2017)