Cargando…

Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria

The public health threat posed by a looming ‘post-antibiotic’ era necessitates new approaches to antibiotic discovery. Drug development has typically avoided exploitation of membrane-binding properties, in contrast to nature’s control of biological pathways via modulation of membrane-associated prot...

Descripción completa

Detalles Bibliográficos
Autores principales: Blaskovich, Mark A. T., Hansford, Karl A., Gong, Yujing, Butler, Mark S., Muldoon, Craig, Huang, Johnny X., Ramu, Soumya, Silva, Alberto B., Cheng, Mu, Kavanagh, Angela M., Ziora, Zyta, Premraj, Rajaratnam, Lindahl, Fredrik, Bradford, Tanya A., Lee, June C., Karoli, Tomislav, Pelingon, Ruby, Edwards, David J., Amado, Maite, Elliott, Alysha G., Phetsang, Wanida, Daud, Noor Huda, Deecke, Johan E., Sidjabat, Hanna E., Ramaologa, Sefetogi, Zuegg, Johannes, Betley, Jason R., Beevers, Andrew P. G., Smith, Richard A. G., Roberts, Jason A., Paterson, David L., Cooper, Matthew A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750218/
https://www.ncbi.nlm.nih.gov/pubmed/29295973
http://dx.doi.org/10.1038/s41467-017-02123-w
_version_ 1783289692398026752
author Blaskovich, Mark A. T.
Hansford, Karl A.
Gong, Yujing
Butler, Mark S.
Muldoon, Craig
Huang, Johnny X.
Ramu, Soumya
Silva, Alberto B.
Cheng, Mu
Kavanagh, Angela M.
Ziora, Zyta
Premraj, Rajaratnam
Lindahl, Fredrik
Bradford, Tanya A.
Lee, June C.
Karoli, Tomislav
Pelingon, Ruby
Edwards, David J.
Amado, Maite
Elliott, Alysha G.
Phetsang, Wanida
Daud, Noor Huda
Deecke, Johan E.
Sidjabat, Hanna E.
Ramaologa, Sefetogi
Zuegg, Johannes
Betley, Jason R.
Beevers, Andrew P. G.
Smith, Richard A. G.
Roberts, Jason A.
Paterson, David L.
Cooper, Matthew A.
author_facet Blaskovich, Mark A. T.
Hansford, Karl A.
Gong, Yujing
Butler, Mark S.
Muldoon, Craig
Huang, Johnny X.
Ramu, Soumya
Silva, Alberto B.
Cheng, Mu
Kavanagh, Angela M.
Ziora, Zyta
Premraj, Rajaratnam
Lindahl, Fredrik
Bradford, Tanya A.
Lee, June C.
Karoli, Tomislav
Pelingon, Ruby
Edwards, David J.
Amado, Maite
Elliott, Alysha G.
Phetsang, Wanida
Daud, Noor Huda
Deecke, Johan E.
Sidjabat, Hanna E.
Ramaologa, Sefetogi
Zuegg, Johannes
Betley, Jason R.
Beevers, Andrew P. G.
Smith, Richard A. G.
Roberts, Jason A.
Paterson, David L.
Cooper, Matthew A.
author_sort Blaskovich, Mark A. T.
collection PubMed
description The public health threat posed by a looming ‘post-antibiotic’ era necessitates new approaches to antibiotic discovery. Drug development has typically avoided exploitation of membrane-binding properties, in contrast to nature’s control of biological pathways via modulation of membrane-associated proteins and membrane lipid composition. Here, we describe the rejuvenation of the glycopeptide antibiotic vancomycin via selective targeting of bacterial membranes. Peptide libraries based on positively charged electrostatic effector sequences are ligated to N-terminal lipophilic membrane-insertive elements and then conjugated to vancomycin. These modified lipoglycopeptides, the ‘vancapticins’, possess enhanced membrane affinity and activity against methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive bacteria, and retain activity against glycopeptide-resistant strains. Optimised antibiotics show in vivo efficacy in multiple models of bacterial infection. This membrane-targeting strategy has potential to ‘revitalise’ antibiotics that have lost effectiveness against recalcitrant bacteria, or enhance the activity of other intravenous-administered drugs that target membrane-associated receptors.
format Online
Article
Text
id pubmed-5750218
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-57502182018-01-13 Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria Blaskovich, Mark A. T. Hansford, Karl A. Gong, Yujing Butler, Mark S. Muldoon, Craig Huang, Johnny X. Ramu, Soumya Silva, Alberto B. Cheng, Mu Kavanagh, Angela M. Ziora, Zyta Premraj, Rajaratnam Lindahl, Fredrik Bradford, Tanya A. Lee, June C. Karoli, Tomislav Pelingon, Ruby Edwards, David J. Amado, Maite Elliott, Alysha G. Phetsang, Wanida Daud, Noor Huda Deecke, Johan E. Sidjabat, Hanna E. Ramaologa, Sefetogi Zuegg, Johannes Betley, Jason R. Beevers, Andrew P. G. Smith, Richard A. G. Roberts, Jason A. Paterson, David L. Cooper, Matthew A. Nat Commun Article The public health threat posed by a looming ‘post-antibiotic’ era necessitates new approaches to antibiotic discovery. Drug development has typically avoided exploitation of membrane-binding properties, in contrast to nature’s control of biological pathways via modulation of membrane-associated proteins and membrane lipid composition. Here, we describe the rejuvenation of the glycopeptide antibiotic vancomycin via selective targeting of bacterial membranes. Peptide libraries based on positively charged electrostatic effector sequences are ligated to N-terminal lipophilic membrane-insertive elements and then conjugated to vancomycin. These modified lipoglycopeptides, the ‘vancapticins’, possess enhanced membrane affinity and activity against methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive bacteria, and retain activity against glycopeptide-resistant strains. Optimised antibiotics show in vivo efficacy in multiple models of bacterial infection. This membrane-targeting strategy has potential to ‘revitalise’ antibiotics that have lost effectiveness against recalcitrant bacteria, or enhance the activity of other intravenous-administered drugs that target membrane-associated receptors. Nature Publishing Group UK 2018-01-02 /pmc/articles/PMC5750218/ /pubmed/29295973 http://dx.doi.org/10.1038/s41467-017-02123-w Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Blaskovich, Mark A. T.
Hansford, Karl A.
Gong, Yujing
Butler, Mark S.
Muldoon, Craig
Huang, Johnny X.
Ramu, Soumya
Silva, Alberto B.
Cheng, Mu
Kavanagh, Angela M.
Ziora, Zyta
Premraj, Rajaratnam
Lindahl, Fredrik
Bradford, Tanya A.
Lee, June C.
Karoli, Tomislav
Pelingon, Ruby
Edwards, David J.
Amado, Maite
Elliott, Alysha G.
Phetsang, Wanida
Daud, Noor Huda
Deecke, Johan E.
Sidjabat, Hanna E.
Ramaologa, Sefetogi
Zuegg, Johannes
Betley, Jason R.
Beevers, Andrew P. G.
Smith, Richard A. G.
Roberts, Jason A.
Paterson, David L.
Cooper, Matthew A.
Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria
title Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria
title_full Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria
title_fullStr Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria
title_full_unstemmed Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria
title_short Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria
title_sort protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750218/
https://www.ncbi.nlm.nih.gov/pubmed/29295973
http://dx.doi.org/10.1038/s41467-017-02123-w
work_keys_str_mv AT blaskovichmarkat proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT hansfordkarla proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT gongyujing proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT butlermarks proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT muldooncraig proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT huangjohnnyx proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT ramusoumya proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT silvaalbertob proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT chengmu proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT kavanaghangelam proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT ziorazyta proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT premrajrajaratnam proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT lindahlfredrik proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT bradfordtanyaa proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT leejunec proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT karolitomislav proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT pelingonruby proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT edwardsdavidj proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT amadomaite proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT elliottalyshag proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT phetsangwanida proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT daudnoorhuda proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT deeckejohane proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT sidjabathannae proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT ramaologasefetogi proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT zueggjohannes proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT betleyjasonr proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT beeversandrewpg proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT smithrichardag proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT robertsjasona proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT patersondavidl proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria
AT coopermatthewa proteininspiredantibioticsactiveagainstvancomycinanddaptomycinresistantbacteria