Cargando…
VAMPnets for deep learning of molecular kinetics
There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural fe...
Autores principales: | Mardt, Andreas, Pasquali, Luca, Wu, Hao, Noé, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750224/ https://www.ncbi.nlm.nih.gov/pubmed/29295994 http://dx.doi.org/10.1038/s41467-017-02388-1 |
Ejemplares similares
-
Author Correction: VAMPnets for deep learning of molecular kinetics
por: Mardt, Andreas, et al.
Publicado: (2018) -
Deep learning to decompose macromolecules into independent Markovian domains
por: Mardt, Andreas, et al.
Publicado: (2022) -
TorchMD: A Deep Learning Framework for Molecular Simulations
por: Doerr, Stefan, et al.
Publicado: (2021) -
Slicing and Dicing: Optimal Coarse-Grained Representation
to Preserve Molecular Kinetics
por: Yang, Wangfei, et al.
Publicado: (2023) -
Large-scale simulation of biomembranes incorporating realistic kinetics into coarse-grained models
por: Sadeghi, Mohsen, et al.
Publicado: (2020)