Cargando…
Estimation of Symptom Severity During Chemotherapy From Passively Sensed Data: Exploratory Study
BACKGROUND: Physical and psychological symptoms are common during chemotherapy in cancer patients, and real-time monitoring of these symptoms can improve patient outcomes. Sensors embedded in mobile phones and wearable activity trackers could be potentially useful in monitoring symptoms passively, w...
Autores principales: | Low, Carissa A, Dey, Anind K, Ferreira, Denzil, Kamarck, Thomas, Sun, Weijing, Bae, Sangwon, Doryab, Afsaneh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750420/ https://www.ncbi.nlm.nih.gov/pubmed/29258977 http://dx.doi.org/10.2196/jmir.9046 |
Ejemplares similares
-
Digital Biomarkers of Symptom Burden Self-Reported by Perioperative Patients Undergoing Pancreatic Surgery: Prospective Longitudinal Study
por: Low, Carissa A, et al.
Publicado: (2021) -
Prediction of Hospital Readmission from Longitudinal Mobile Data Streams
por: Qian, Chen, et al.
Publicado: (2021) -
Identifying Behavioral Phenotypes of Loneliness and Social Isolation with Passive Sensing: Statistical Analysis, Data Mining and Machine Learning of Smartphone and Fitbit Data
por: Doryab, Afsaneh, et al.
Publicado: (2019) -
Understanding practices and needs of researchers in human state modeling by passive mobile sensing
por: Xu, Xuhai, et al.
Publicado: (2021) -
Predicting Depression in Adolescents Using Mobile and Wearable Sensors: Multimodal Machine Learning–Based Exploratory Study
por: Mullick, Tahsin, et al.
Publicado: (2022)