Cargando…
Single Channel EEG Artifact Identification Using Two-Dimensional Multi-Resolution Analysis
As a diagnostic monitoring approach, electroencephalogram (EEG) signals can be decoded by signal processing methodologies for various health monitoring purposes. However, EEG recordings are contaminated by other interferences, particularly facial and ocular artifacts generated by the user. This is s...
Autores principales: | Taherisadr, Mojtaba, Dehzangi, Omid, Parsaei, Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750748/ https://www.ncbi.nlm.nih.gov/pubmed/29236042 http://dx.doi.org/10.3390/s17122895 |
Ejemplares similares
-
Wearable Driver Distraction Identification On-The-Road via Continuous Decomposition of Galvanic Skin Responses
por: Dehzangi, Omid, et al.
Publicado: (2018) -
IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion
por: Dehzangi, Omid, et al.
Publicado: (2017) -
A Preliminary Study of Muscular Artifact Cancellation in Single-Channel EEG
por: Chen, Xun, et al.
Publicado: (2014) -
Remove Artifacts from a Single-Channel EEG Based on VMD and SOBI
por: Liu, Changrui, et al.
Publicado: (2022) -
Eye-blink artifact removal from single channel EEG with k-means and SSA
por: Maddirala, Ajay Kumar, et al.
Publicado: (2021)