Cargando…
IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion
The wide spread usage of wearable sensors such as in smart watches has provided continuous access to valuable user generated data such as human motion that could be used to identify an individual based on his/her motion patterns such as, gait. Several methods have been suggested to extract various h...
Autores principales: | Dehzangi, Omid, Taherisadr, Mojtaba, ChangalVala, Raghvendar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750784/ https://www.ncbi.nlm.nih.gov/pubmed/29186887 http://dx.doi.org/10.3390/s17122735 |
Ejemplares similares
-
Single Channel EEG Artifact Identification Using Two-Dimensional Multi-Resolution Analysis
por: Taherisadr, Mojtaba, et al.
Publicado: (2017) -
Wearable Driver Distraction Identification On-The-Road via Continuous Decomposition of Galvanic Skin Responses
por: Dehzangi, Omid, et al.
Publicado: (2018) -
IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks
por: Marcos Mazon, Daniel, et al.
Publicado: (2022) -
Gait-CNN-ViT: Multi-Model Gait Recognition with Convolutional Neural Networks and Vision Transformer
por: Mogan, Jashila Nair, et al.
Publicado: (2023) -
A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors
por: Huang, Haohua, et al.
Publicado: (2021)