Cargando…
A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data
Class imbalance presents a major hurdle in the application of classification methods. A commonly taken approach is to learn ensembles of classifiers using rebalanced data. Examples include bootstrap averaging (bagging) combined with either undersampling or oversampling of the minority class examples...
Autores principales: | Collell, Guillem, Prelec, Drazen, Patil, Kaustubh R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Publishers
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750819/ https://www.ncbi.nlm.nih.gov/pubmed/29398782 http://dx.doi.org/10.1016/j.neucom.2017.08.035 |
Ejemplares similares
-
Iterative ensemble feature selection for multiclass classification of imbalanced microarray data
por: Yang, Junshan, et al.
Publicado: (2016) -
An Ensemble-Based Multiclass Classifier for Intrusion Detection Using Internet of Things
por: Rani, Deepti, et al.
Publicado: (2022) -
A Novel Ensemble Method for Imbalanced Data Learning: Bagging of Extrapolation-SMOTE SVM
por: Wang, Qi, et al.
Publicado: (2017) -
Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
por: Klikowski, Jakub, et al.
Publicado: (2020) -
multiclassPairs: an R package to train multiclass pair-based classifier
por: Marzouka, Nour-Al-Dain, et al.
Publicado: (2021)