Cargando…
Consistently Sampled Correlation Filters with Space Anisotropic Regularization for Visual Tracking
Most existing correlation filter-based tracking algorithms, which use fixed patches and cyclic shifts as training and detection measures, assume that the training samples are reliable and ignore the inconsistencies between training samples and detection samples. We propose to construct and study a c...
Autores principales: | Shi, Guokai, Xu, Tingfa, Guo, Jie, Luo, Jiqiang, Li, Yuankun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750837/ https://www.ncbi.nlm.nih.gov/pubmed/29231876 http://dx.doi.org/10.3390/s17122889 |
Ejemplares similares
-
Adaptive Correlation Model for Visual Tracking Using Keypoints Matching and Deep Convolutional Feature
por: Li, Yuankun, et al.
Publicado: (2018) -
Alleviate Similar Object in Visual Tracking via Online Learning Interference-Target Spatial Structure
por: Shi, Guokai, et al.
Publicado: (2017) -
Multi-View Structural Local Subspace Tracking
por: Guo, Jie, et al.
Publicado: (2017) -
Real Sample Consistency Regularization for GANs
por: Zhang, Xiangde, et al.
Publicado: (2021) -
Motion-Aware Correlation Filters for Online Visual Tracking
por: Zhang, Yihong, et al.
Publicado: (2018)