Cargando…
Lead Emissions and Population Vulnerability in the Detroit (Michigan, USA) Metropolitan Area, 2006–2013: A Spatial and Temporal Analysis
Objective: The purpose of this research is to geographically model airborne lead emission concentrations and total lead deposition in the Detroit Metropolitan Area (DMA) from 2006 to 2013. Further, this study characterizes the racial and socioeconomic composition of recipient neighborhoods and estim...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750864/ https://www.ncbi.nlm.nih.gov/pubmed/29168789 http://dx.doi.org/10.3390/ijerph14121445 |
Sumario: | Objective: The purpose of this research is to geographically model airborne lead emission concentrations and total lead deposition in the Detroit Metropolitan Area (DMA) from 2006 to 2013. Further, this study characterizes the racial and socioeconomic composition of recipient neighborhoods and estimates the potential for IQ (Intelligence Quotient) loss of children residing there. Methods: Lead emissions were modeled from emitting facilities in the DMA using AERMOD (American Meteorological Society/Environmental Protection Agency Regulatory Model). Multilevel modeling was used to estimate local racial residential segregation, controlling for poverty. Global Moran’s I bivariate spatial autocorrelation statistics were used to assess modeled emissions with increasing segregation. Results: Lead emitting facilities were primarily located in, and moving to, highly black segregated neighborhoods regardless of poverty levels—a phenomenon known as environmental injustice. The findings from this research showed three years of elevated airborne emission concentrations in these neighborhoods to equate to a predicted 1.0 to 3.0 reduction in IQ points for children living there. Across the DMA there are many areas where annual lead deposition was substantially higher than recommended for aquatic (rivers, lakes, etc.) and terrestrial (forests, dunes, etc.) ecosystems. These lead levels result in decreased reproductive and growth rates in plants and animals, and neurological deficits in vertebrates. Conclusions: This lead-hazard and neighborhood context assessment will inform future childhood lead exposure studies and potential health consequences in the DMA. |
---|