Cargando…

Comprehensive Detection of Gas Plumes from Multibeam Water Column Images with Minimisation of Noise Interferences

Multibeam echosounder systems (MBES) can record backscatter strengths of gas plumes in the water column (WC) images that may be an indicator of possible occurrence of gas at certain depths. Manual or automatic detection is generally adopted in finding gas plumes, but frequently results in low effici...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jianhu, Meng, Junxia, Zhang, Hongmei, Wang, Shiqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751054/
https://www.ncbi.nlm.nih.gov/pubmed/29186014
http://dx.doi.org/10.3390/s17122755
Descripción
Sumario:Multibeam echosounder systems (MBES) can record backscatter strengths of gas plumes in the water column (WC) images that may be an indicator of possible occurrence of gas at certain depths. Manual or automatic detection is generally adopted in finding gas plumes, but frequently results in low efficiency and high false detection rates because of WC images that are polluted by noise. To improve the efficiency and reliability of the detection, a comprehensive detection method is proposed in this paper. In the proposed method, the characteristics of WC background noise are first analyzed and given. Then, the mean standard deviation threshold segmentations are respectively used for the denoising of time-angle and depth-angle images, an intersection operation is performed for the two segmented images to further weaken noise in the WC data, and the gas plumes in the WC data are detected from the intersection image by the morphological constraint. The proposed method was tested by conducting shallow-water and deepwater experiments. In these experiments, the detections were conducted automatically and higher correct detection rates than the traditional methods were achieved. The performance of the proposed method is analyzed and discussed.