Cargando…
Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks
Optimal fertilization of clover-grass fields relies on knowledge of the clover and grass fractions. This study shows how knowledge can be obtained by analyzing images collected in fields automatically. A fully convolutional neural network was trained to create a pixel-wise classification of clover,...
Autores principales: | Skovsen, Søren, Dyrmann, Mads, Mortensen, Anders Krogh, Steen, Kim Arild, Green, Ole, Eriksen, Jørgen, Gislum, René, Jørgensen, Rasmus Nyholm, Karstoft, Henrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751073/ https://www.ncbi.nlm.nih.gov/pubmed/29258215 http://dx.doi.org/10.3390/s17122930 |
Ejemplares similares
-
Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks
por: Skovsen, Søren Kelstrup, et al.
Publicado: (2020) -
Weed Classification Using Explainable Multi-Resolution Slot Attention
por: Farkhani, Sadaf, et al.
Publicado: (2021) -
A Novel Locating System for Cereal Plant Stem Emerging Points’ Detection Using a Convolutional Neural Network
por: Karimi, Hadi, et al.
Publicado: (2018) -
Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy
por: Cong, Wen-Feng, et al.
Publicado: (2017) -
Designing and Testing a UAV Mapping System for Agricultural Field Surveying
por: Christiansen, Martin Peter, et al.
Publicado: (2017)