Cargando…

Controlling the Molecular Weight of Lignosulfonates by an Alkaline Oxidative Treatment at Moderate Temperatures and Atmospheric Pressure: A Size-Exclusion and Reverse-Phase Chromatography Study

The molecular weights of lignosulfonates (LSs) are modified by a rather simple process involving an alkaline oxidative treatment at moderate temperatures (70–90 °C) and atmospheric pressure. Starting from LSs with an average molecular weight of 90,000 Da, and using such a treatment, one can prepare...

Descripción completa

Detalles Bibliográficos
Autores principales: Guizani, Chamseddine, Lachenal, Dominique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751123/
https://www.ncbi.nlm.nih.gov/pubmed/29186808
http://dx.doi.org/10.3390/ijms18122520
Descripción
Sumario:The molecular weights of lignosulfonates (LSs) are modified by a rather simple process involving an alkaline oxidative treatment at moderate temperatures (70–90 °C) and atmospheric pressure. Starting from LSs with an average molecular weight of 90,000 Da, and using such a treatment, one can prepare controlled molecular weight LSs in the range of 30,000 to 3500 Da based on the average mass molecular weight. The LS depolymerisation was monitored via reverse-phase and size-exclusion chromatography. It has been shown that the combination of O(2), H(2)O(2) and Cu as a catalyst in alkaline conditions at 80 °C induces a high LS depolymerisation. The depolymerisation was systemically accompanied by a vanillin production, the yields of which reached 1.4 wt % (weight percentage on LS raw basis) in such conditions. Also, the average molecular weight and vanillin concentration were correlated and depended linearly on the temperature and reaction duration.