Cargando…
Of Energy and Entropy: The Ineluctable Impact of Aging in Old Age Dementia
Alzheimer’s disease (AD) represents the most common form of dementia among older age subjects, and despite decades of studies, the underlying mechanisms remain unresolved. The definition of AD has changed over the past 100 years, and while early-onset AD is commonly related to genetic mutations, lat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751274/ https://www.ncbi.nlm.nih.gov/pubmed/29232829 http://dx.doi.org/10.3390/ijms18122672 |
Sumario: | Alzheimer’s disease (AD) represents the most common form of dementia among older age subjects, and despite decades of studies, the underlying mechanisms remain unresolved. The definition of AD has changed over the past 100 years, and while early-onset AD is commonly related to genetic mutations, late-onset AD is more likely due to a gradual accumulation of age-related modifications. “Normal brain aging” and AD may represent different pathways of successful or failed capability to adapt brain structures and cerebral functions. Cellular senescence and age-related changes (ARCs) affecting the brain may be considered as biologic manifestations of increasing entropy, a measure of disorder. Late-onset AD may be regarded as the final effect of a reduced energy production, due to exhausted mitochondria, and an increased entropy in the brain. This unique trajectory enables a bioenergetics-centered strategy targeting disease-stage specific profile of brain metabolism for disease prevention and treatment. |
---|