Cargando…
Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection
Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parame...
Autores principales: | Wang, Shunfang, Nie, Bing, Yue, Kun, Fei, Yu, Li, Wenjia, Xu, Dongshu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751319/ https://www.ncbi.nlm.nih.gov/pubmed/29244758 http://dx.doi.org/10.3390/ijms18122718 |
Ejemplares similares
-
Efficient Selection of Gaussian Kernel SVM Parameters for Imbalanced Data
por: Tsai, Chen-An, et al.
Publicado: (2023) -
Protein subnuclear localization based on a new effective representation and intelligent kernel linear discriminant analysis by dichotomous greedy genetic algorithm
por: Wang, Shunfang, et al.
Publicado: (2018) -
Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
por: Mei, Suyu
Publicado: (2012) -
Weighted Feature Gaussian Kernel SVM for Emotion Recognition
por: Wei, Wei, et al.
Publicado: (2016) -
Correction: Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
por: Mei, Suyu
Publicado: (2013)