Cargando…
Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration
BACKGROUND: Prediction of drug-disease interactions is promising for either drug repositioning or disease treatment fields. The discovery of novel drug-disease interactions, on one hand can help to find novel indictions for the approved drugs; on the other hand can provide new therapeutic approaches...
Autores principales: | Wu, Guangsheng, Liu, Juan, Wang, Caihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751445/ https://www.ncbi.nlm.nih.gov/pubmed/29297383 http://dx.doi.org/10.1186/s12920-017-0311-0 |
Ejemplares similares
-
Deep graph cut network for weakly-supervised semantic segmentation
por: Feng, Jiapei, et al.
Publicado: (2021) -
A semi-automatic motion-constrained Graph Cut algorithm for Pedestrian Detection in thermal surveillance videos
por: Oluyide, Oluwakorede Monica, et al.
Publicado: (2022) -
Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks
por: Wang, Juexin, et al.
Publicado: (2020) -
SeBioGraph: Semi-supervised Deep Learning for the Graph via Sustainable Knowledge Transfer
por: Ma, Yugang, et al.
Publicado: (2021) -
Semi-Supervised Multi-View Clustering with Weighted Anchor Graph Embedding
por: Wang, Senhong, et al.
Publicado: (2021)