Cargando…
A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
Bearing fault diagnosis is imperative for the maintenance, reliability, and durability of rotary machines. It can reduce economical losses by eliminating unexpected downtime in industry due to failure of rotary machines. Though widely investigated in the past couple of decades, continued advancement...
Autores principales: | Sohaib, Muhammad, Kim, Cheol-Hong, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751499/ https://www.ncbi.nlm.nih.gov/pubmed/29232908 http://dx.doi.org/10.3390/s17122876 |
Ejemplares similares
-
Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
por: Pham, Minh Tuan, et al.
Publicado: (2020) -
An Explainable AI-Based Fault Diagnosis Model for Bearings
por: Hasan, Md Junayed, et al.
Publicado: (2021) -
Novel Bearing Fault Diagnosis Using Gaussian Mixture Model-Based Fault Band Selection
por: Maliuk, Andrei S., et al.
Publicado: (2021) -
Bearing Fault Diagnosis Using a Hybrid Fuzzy V-Structure Fault Estimator Scheme
por: Piltan, Farzin, et al.
Publicado: (2023) -
A Novel Hybrid Deep Learning Method for Fault Diagnosis of Rotating Machinery Based on Extended WDCNN and Long Short-Term Memory
por: Gao, Yangde, et al.
Publicado: (2021)