Cargando…

Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers

Cardiovascular disease (CVD) and cancer are two leading causes of death worldwide. CVD and cancer share risk factors such as obesity and diabetes mellitus and have common diagnostic biomarkers such as interleukin-6 and C-reactive protein. Thus, timely and accurate diagnosis of these two correlated d...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jiandong, Dong, Meili, Santos, Susy, Rigatto, Claudio, Liu, Yong, Lin, Francis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751502/
https://www.ncbi.nlm.nih.gov/pubmed/29258216
http://dx.doi.org/10.3390/s17122934
Descripción
Sumario:Cardiovascular disease (CVD) and cancer are two leading causes of death worldwide. CVD and cancer share risk factors such as obesity and diabetes mellitus and have common diagnostic biomarkers such as interleukin-6 and C-reactive protein. Thus, timely and accurate diagnosis of these two correlated diseases is of high interest to both the research and healthcare communities. Most conventional methods for CVD and cancer biomarker detection such as microwell plate-based immunoassay and polymerase chain reaction often suffer from high costs, low test speeds, and complicated procedures. Recently, lab-on-a-chip (LoC)-based platforms have been increasingly developed for CVD and cancer biomarker sensing and analysis using various molecular and cell-based diagnostic biomarkers. These new platforms not only enable better sample preparation, chemical manipulation and reaction, high-throughput and portability, but also provide attractive features such as label-free detection and improved sensitivity due to the integration of various novel detection techniques. These features effectively improve the diagnostic test speed and simplify the detection procedure. In addition, microfluidic cell assays and organ-on-chip models offer new potential approaches for CVD and cancer diagnosis. Here we provide a mini-review focusing on recent development of LoC-based methods for CVD and cancer diagnostic biomarker measurements, and our perspectives of the challenges, opportunities and future directions.