Cargando…
Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm
This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs) trained via the stochastic diagonal Levenberg-Marquardt (S-DLM) algorithm. The CNNs utilize the spectral energy maps (SEMs) of the acoustic emission...
Autores principales: | Tra, Viet, Kim, Jaeyoung, Khan, Sheraz Ali, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751511/ https://www.ncbi.nlm.nih.gov/pubmed/29211025 http://dx.doi.org/10.3390/s17122834 |
Ejemplares similares
-
Levenberg-Marquardt Method for the Eigenvalue Complementarity Problem
por: Chen, Yuan-yuan, et al.
Publicado: (2014) -
Human Gait Analysis and Prediction Using the Levenberg-Marquardt Method
por: Alharbi, Abdullah, et al.
Publicado: (2021) -
Comparison result of inversion of gravity data of a fault by particle swarm optimization and Levenberg-Marquardt methods
por: Toushmalani, Reza
Publicado: (2013) -
Ferromagnetic Mass Localization in Check Point Configuration Using a Levenberg Marquardt Algorithm
por: Alimi, Roger, et al.
Publicado: (2009) -
Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity
por: Shah, Z., et al.
Publicado: (2022)