Cargando…

Regional physiology of ARDS

The acute respiratory distress (ARDS) lung is usually characterized by a high degree of inhomogeneity. Indeed, the same lung may show a wide spectrum of aeration alterations, ranging from completely gasless regions, up to hyperinflated areas. This inhomogeneity is normally caused by the presence of...

Descripción completa

Detalles Bibliográficos
Autores principales: Gattinoni, Luciano, Tonetti, Tommaso, Quintel, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751536/
https://www.ncbi.nlm.nih.gov/pubmed/29297365
http://dx.doi.org/10.1186/s13054-017-1905-9
_version_ 1783289966191706112
author Gattinoni, Luciano
Tonetti, Tommaso
Quintel, Michael
author_facet Gattinoni, Luciano
Tonetti, Tommaso
Quintel, Michael
author_sort Gattinoni, Luciano
collection PubMed
description The acute respiratory distress (ARDS) lung is usually characterized by a high degree of inhomogeneity. Indeed, the same lung may show a wide spectrum of aeration alterations, ranging from completely gasless regions, up to hyperinflated areas. This inhomogeneity is normally caused by the presence of lung edema and/or anatomical variations, and is deeply influenced by the gravitational forces. For any given airway pressure generated by the ventilator, the pressure acting directly on the lung (i.e., the transpulmonary pressure or lung stress) is determined by two main factors: 1) the ratio between lung elastance and the total elastance of the respiratory system (which has been shown to vary widely in ARDS patients, between 0.2 and 0.8); and 2) the lung size. In severe ARDS, the ventilatable parenchyma is strongly reduced in size (‘baby lung’); its resting volume could be as low as 300 mL, and the total inspiratory capacity could be reached with a tidal volume of 750–900 mL, thus generating lethal stress and strain in the lung. Although this is possible in theory, it does not explain the occurrence of ventilator-induced lung injury (VILI) in lungs ventilated with much lower tidal volumes. In fact, the ARDS lung contains areas acting as local stress multipliers and they could multiply the stress by a factor ~ 2, meaning that in those regions the transpulmonary pressure could be double that present in other parts of the same lung. These ‘stress raisers’ widely correspond to the inhomogenous areas of the ARDS lung and can be present in up to 40% of the lung. Although most of the literature on VILI concentrates on the possible dangers of tidal volume, mechanical ventilation in fact delivers mechanical power (i.e., energy per unit of time) to the lung parenchyma, which reacts to it according to its anatomical structure and pathophysiological status. The determinants of mechanical power are not only the tidal volume, but also respiratory rate, inspiratory flow, and positive end-expiratory pressure (PEEP). In the end, decreasing mechanical power, increasing lung homogeneity, and avoiding reaching the anatomical limits of the ‘baby lung’ should be the goals for safe ventilation in ARDS.
format Online
Article
Text
id pubmed-5751536
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-57515362018-01-05 Regional physiology of ARDS Gattinoni, Luciano Tonetti, Tommaso Quintel, Michael Crit Care Review The acute respiratory distress (ARDS) lung is usually characterized by a high degree of inhomogeneity. Indeed, the same lung may show a wide spectrum of aeration alterations, ranging from completely gasless regions, up to hyperinflated areas. This inhomogeneity is normally caused by the presence of lung edema and/or anatomical variations, and is deeply influenced by the gravitational forces. For any given airway pressure generated by the ventilator, the pressure acting directly on the lung (i.e., the transpulmonary pressure or lung stress) is determined by two main factors: 1) the ratio between lung elastance and the total elastance of the respiratory system (which has been shown to vary widely in ARDS patients, between 0.2 and 0.8); and 2) the lung size. In severe ARDS, the ventilatable parenchyma is strongly reduced in size (‘baby lung’); its resting volume could be as low as 300 mL, and the total inspiratory capacity could be reached with a tidal volume of 750–900 mL, thus generating lethal stress and strain in the lung. Although this is possible in theory, it does not explain the occurrence of ventilator-induced lung injury (VILI) in lungs ventilated with much lower tidal volumes. In fact, the ARDS lung contains areas acting as local stress multipliers and they could multiply the stress by a factor ~ 2, meaning that in those regions the transpulmonary pressure could be double that present in other parts of the same lung. These ‘stress raisers’ widely correspond to the inhomogenous areas of the ARDS lung and can be present in up to 40% of the lung. Although most of the literature on VILI concentrates on the possible dangers of tidal volume, mechanical ventilation in fact delivers mechanical power (i.e., energy per unit of time) to the lung parenchyma, which reacts to it according to its anatomical structure and pathophysiological status. The determinants of mechanical power are not only the tidal volume, but also respiratory rate, inspiratory flow, and positive end-expiratory pressure (PEEP). In the end, decreasing mechanical power, increasing lung homogeneity, and avoiding reaching the anatomical limits of the ‘baby lung’ should be the goals for safe ventilation in ARDS. BioMed Central 2017-12-28 /pmc/articles/PMC5751536/ /pubmed/29297365 http://dx.doi.org/10.1186/s13054-017-1905-9 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Review
Gattinoni, Luciano
Tonetti, Tommaso
Quintel, Michael
Regional physiology of ARDS
title Regional physiology of ARDS
title_full Regional physiology of ARDS
title_fullStr Regional physiology of ARDS
title_full_unstemmed Regional physiology of ARDS
title_short Regional physiology of ARDS
title_sort regional physiology of ards
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751536/
https://www.ncbi.nlm.nih.gov/pubmed/29297365
http://dx.doi.org/10.1186/s13054-017-1905-9
work_keys_str_mv AT gattinoniluciano regionalphysiologyofards
AT tonettitommaso regionalphysiologyofards
AT quintelmichael regionalphysiologyofards