Cargando…
Probability-based collaborative filtering model for predicting gene–disease associations
BACKGROUND: Accurately predicting pathogenic human genes has been challenging in recent research. Considering extensive gene–disease data verified by biological experiments, we can apply computational methods to perform accurate predictions with reduced time and expenses. METHODS: We propose a proba...
Autores principales: | Zeng, Xiangxiang, Ding, Ningxiang, Rodríguez-Patón, Alfonso, Zou, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751590/ https://www.ncbi.nlm.nih.gov/pubmed/29297351 http://dx.doi.org/10.1186/s12920-017-0313-y |
Ejemplares similares
-
Complex Network Clustering by a Multi-objective Evolutionary Algorithm Based on Decomposition and Membrane Structure
por: Ju, Ying, et al.
Publicado: (2016) -
A novel collaborative filtering model for LncRNA-disease association prediction based on the Naïve Bayesian classifier
por: Yu, Jingwen, et al.
Publicado: (2019) -
Approaches for Recognizing Disease Genes Based on Network
por: Zou, Quan, et al.
Publicado: (2014) -
Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking
por: Yang, Feng, et al.
Publicado: (2016) -
Modeling of Recommendation System Based on Emotional Information and Collaborative Filtering
por: Kim, Tae-Yeun, et al.
Publicado: (2021)