Cargando…
Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring
A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor mo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751616/ https://www.ncbi.nlm.nih.gov/pubmed/29182563 http://dx.doi.org/10.3390/s17122745 |
Sumario: | A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques. |
---|