Cargando…
A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction
BACKGROUND: Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding an...
Autores principales: | Deng, Lei, Fan, Chao, Zeng, Zhiwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751690/ https://www.ncbi.nlm.nih.gov/pubmed/29297299 http://dx.doi.org/10.1186/s12859-017-1971-7 |
Ejemplares similares
-
Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
por: Li, Qi, et al.
Publicado: (2022) -
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
por: Liu, Junxiu, et al.
Publicado: (2020) -
Breath analysis based early gastric cancer classification from deep stacked sparse autoencoder neural network
por: Aslam, Muhammad Aqeel, et al.
Publicado: (2021) -
SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network
por: Jiang, Han-Jing, et al.
Publicado: (2020) -
Prediction of Drug-Likeness Using Deep Autoencoder Neural Networks
por: Hu, Qiwan, et al.
Publicado: (2018)