Cargando…
2D–EM clustering approach for high-dimensional data through folding feature vectors
BACKGROUND: Clustering methods are becoming widely utilized in biomedical research where the volume and complexity of data is rapidly increasing. Unsupervised clustering of patient information can reveal distinct phenotype groups with different underlying mechanism, risk prognosis and treatment resp...
Autores principales: | Sharma, Alok, Kamola, Piotr J., Tsunoda, Tatsuhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751765/ https://www.ncbi.nlm.nih.gov/pubmed/29297298 http://dx.doi.org/10.1186/s12859-017-1970-8 |
Ejemplares similares
-
Divisive hierarchical maximum likelihood clustering
por: Sharma, Alok, et al.
Publicado: (2017) -
Stepwise iterative maximum likelihood clustering approach
por: Sharma, Alok, et al.
Publicado: (2016) -
DeepFeature: feature selection in nonimage data using convolutional neural network
por: Sharma, Alok, et al.
Publicado: (2021) -
An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information
por: Kumar, Shiu, et al.
Publicado: (2017) -
An integrative machine learning approach for prediction of toxicity-related drug safety
por: Lysenko, Artem, et al.
Publicado: (2018)