Cargando…
Deep learning architectures for multi-label classification of intelligent health risk prediction
BACKGROUND: Multi-label classification of data remains to be a challenging problem. Because of the complexity of the data, it is sometimes difficult to infer information about classes that are not mutually exclusive. For medical data, patients could have symptoms of multiple different diseases at th...
Autores principales: | Maxwell, Andrew, Li, Runzhi, Yang, Bei, Weng, Heng, Ou, Aihua, Hong, Huixiao, Zhou, Zhaoxian, Gong, Ping, Zhang, Chaoyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751777/ https://www.ncbi.nlm.nih.gov/pubmed/29297288 http://dx.doi.org/10.1186/s12859-017-1898-z |
Ejemplares similares
-
Structure–activity relationship-based chemical classification of highly imbalanced Tox21 datasets
por: Idakwo, Gabriel, et al.
Publicado: (2020) -
Deep Learning-Based Structure-Activity Relationship Modeling for Multi-Category Toxicity Classification: A Case Study of 10K Tox21 Chemicals With High-Throughput Cell-Based Androgen Receptor Bioassay Data
por: Idakwo, Gabriel, et al.
Publicado: (2019) -
EnsemV3X: a novel ensembled deep learning architecture for multi-label scene classification
por: Sobti, Priyal, et al.
Publicado: (2021) -
Deep Learning Methods for Omics Data Imputation
por: Huang, Lei, et al.
Publicado: (2023) -
A Versatile Deep Learning Architecture for Classification and Label-Free Prediction of Hyperspectral Images
por: Manifold, Bryce, et al.
Publicado: (2021)