Cargando…
CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes
BACKGROUND: The β-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a computational tool to classify the newly identified BL enzymes...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751796/ https://www.ncbi.nlm.nih.gov/pubmed/29297322 http://dx.doi.org/10.1186/s12859-017-1972-6 |
_version_ | 1783290020559323136 |
---|---|
author | White, Clarence Ismail, Hamid D. Saigo, Hiroto KC, Dukka B. |
author_facet | White, Clarence Ismail, Hamid D. Saigo, Hiroto KC, Dukka B. |
author_sort | White, Clarence |
collection | PubMed |
description | BACKGROUND: The β-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a computational tool to classify the newly identified BL enzymes into one of its classes. There are two types of classification of BL enzymes: Molecular Classification and Functional Classification. Existing computational methods only address Molecular Classification and the performance of these existing methods is unsatisfactory. RESULTS: We addressed the unsatisfactory performance of the existing methods by implementing a Deep Learning approach called Convolutional Neural Network (CNN). We developed CNN-BLPred, an approach for the classification of BL proteins. The CNN-BLPred uses Gradient Boosted Feature Selection (GBFS) in order to select the ideal feature set for each BL classification. Based on the rigorous benchmarking of CCN-BLPred using both leave-one-out cross-validation and independent test sets, CCN-BLPred performed better than the other existing algorithms. Compared with other architectures of CNN, Recurrent Neural Network, and Random Forest, the simple CNN architecture with only one convolutional layer performs the best. After feature extraction, we were able to remove ~95% of the 10,912 features using Gradient Boosted Trees. During 10-fold cross validation, we increased the accuracy of the classic BL predictions by 7%. We also increased the accuracy of Class A, Class B, Class C, and Class D performance by an average of 25.64%. The independent test results followed a similar trend. CONCLUSIONS: We implemented a deep learning algorithm known as Convolutional Neural Network (CNN) to develop a classifier for BL classification. Combined with feature selection on an exhaustive feature set and using balancing method such as Random Oversampling (ROS), Random Undersampling (RUS) and Synthetic Minority Oversampling Technique (SMOTE), CNN-BLPred performs significantly better than existing algorithms for BL classification. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-017-1972-6) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5751796 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-57517962018-01-05 CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes White, Clarence Ismail, Hamid D. Saigo, Hiroto KC, Dukka B. BMC Bioinformatics Research BACKGROUND: The β-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a computational tool to classify the newly identified BL enzymes into one of its classes. There are two types of classification of BL enzymes: Molecular Classification and Functional Classification. Existing computational methods only address Molecular Classification and the performance of these existing methods is unsatisfactory. RESULTS: We addressed the unsatisfactory performance of the existing methods by implementing a Deep Learning approach called Convolutional Neural Network (CNN). We developed CNN-BLPred, an approach for the classification of BL proteins. The CNN-BLPred uses Gradient Boosted Feature Selection (GBFS) in order to select the ideal feature set for each BL classification. Based on the rigorous benchmarking of CCN-BLPred using both leave-one-out cross-validation and independent test sets, CCN-BLPred performed better than the other existing algorithms. Compared with other architectures of CNN, Recurrent Neural Network, and Random Forest, the simple CNN architecture with only one convolutional layer performs the best. After feature extraction, we were able to remove ~95% of the 10,912 features using Gradient Boosted Trees. During 10-fold cross validation, we increased the accuracy of the classic BL predictions by 7%. We also increased the accuracy of Class A, Class B, Class C, and Class D performance by an average of 25.64%. The independent test results followed a similar trend. CONCLUSIONS: We implemented a deep learning algorithm known as Convolutional Neural Network (CNN) to develop a classifier for BL classification. Combined with feature selection on an exhaustive feature set and using balancing method such as Random Oversampling (ROS), Random Undersampling (RUS) and Synthetic Minority Oversampling Technique (SMOTE), CNN-BLPred performs significantly better than existing algorithms for BL classification. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-017-1972-6) contains supplementary material, which is available to authorized users. BioMed Central 2017-12-28 /pmc/articles/PMC5751796/ /pubmed/29297322 http://dx.doi.org/10.1186/s12859-017-1972-6 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research White, Clarence Ismail, Hamid D. Saigo, Hiroto KC, Dukka B. CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes |
title | CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes |
title_full | CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes |
title_fullStr | CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes |
title_full_unstemmed | CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes |
title_short | CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes |
title_sort | cnn-blpred: a convolutional neural network based predictor for β-lactamases (bl) and their classes |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751796/ https://www.ncbi.nlm.nih.gov/pubmed/29297322 http://dx.doi.org/10.1186/s12859-017-1972-6 |
work_keys_str_mv | AT whiteclarence cnnblpredaconvolutionalneuralnetworkbasedpredictorforblactamasesblandtheirclasses AT ismailhamidd cnnblpredaconvolutionalneuralnetworkbasedpredictorforblactamasesblandtheirclasses AT saigohiroto cnnblpredaconvolutionalneuralnetworkbasedpredictorforblactamasesblandtheirclasses AT kcdukkab cnnblpredaconvolutionalneuralnetworkbasedpredictorforblactamasesblandtheirclasses |