Cargando…
Fast genomic prediction of breeding values using parallel Markov chain Monte Carlo with convergence diagnosis
BACKGROUND: Running multiple-chain Markov Chain Monte Carlo (MCMC) provides an efficient parallel computing method for complex Bayesian models, although the efficiency of the approach critically depends on the length of the non-parallelizable burn-in period, for which all simulated data are discarde...
Autores principales: | Guo, Peng, Zhu, Bo, Niu, Hong, Wang, Zezhao, Liang, Yonghu, Chen, Yan, Zhang, Lupei, Ni, Hemin, Guo, Yong, Hay, El Hamidi A., Gao, Xue, Gao, Huijiang, Wu, Xiaolin, Xu, Lingyang, Li, Junya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751823/ https://www.ncbi.nlm.nih.gov/pubmed/29298666 http://dx.doi.org/10.1186/s12859-017-2003-3 |
Ejemplares similares
-
Genomic prediction with parallel computing for slaughter traits in Chinese Simmental beef cattle using high-density genotypes
por: Guo, Peng, et al.
Publicado: (2017) -
Massively parallel Markov chain Monte Carlo with BAT
por: Beaujean, Frederik
Publicado: (2012) -
Theoretical Evaluation of Multi-Breed Genomic Prediction in Chinese Indigenous Cattle
por: Xu, Lei, et al.
Publicado: (2019) -
Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array
por: Zhu, Bo, et al.
Publicado: (2017) -
Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics
por: Wu, Xiao-Lin, et al.
Publicado: (2012)