Cargando…
Inhibition of TDP43-Mediated SNHG12-miR-195-SOX5 Feedback Loop Impeded Malignant Biological Behaviors of Glioma Cells
Long non-coding RNA (lncRNA) dysregulation is involved in tumorigenesis and regulation of diverse cellular processes in gliomas. lncRNA SNHG12 is upregulated and promotes cell growth in human osteosarcoma cells. TAR-DNA binding protein 43 (TDP43) functions as an oncogene in various tumors by modulat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751968/ https://www.ncbi.nlm.nih.gov/pubmed/29499929 http://dx.doi.org/10.1016/j.omtn.2017.12.001 |
Sumario: | Long non-coding RNA (lncRNA) dysregulation is involved in tumorigenesis and regulation of diverse cellular processes in gliomas. lncRNA SNHG12 is upregulated and promotes cell growth in human osteosarcoma cells. TAR-DNA binding protein 43 (TDP43) functions as an oncogene in various tumors by modulating RNA expression. Downregulation of TDP43 or SNHG12 significantly inhibited malignant biological behaviors of glioma cells. miR-195, downregulated in glioma tissues and cells, significantly impaired the malignant progression of glioma cells. TDP43 upregulated miR-195 in an SNHG12-dependent manner. We further revealed that SNHG12 and miR-195 were in an RNA-induced silencing complex (RISC). Inhibition of SNHG12 combined with restoration of miR-195 robustly reduced tumor growth in vivo. SOX5 was overexpressed in glioma tissues and cells. miR-195 targeted SOX5 3′ UTR in a sequence-specific manner. Gelsolin was activated by SOX5. More importantly, SOX5 activated SNHG12 promoter and upregulated its expression, forming a feedback loop. Dysregulation of SNHG12, miR-195, and SOX5 predicted poor prognosis of glioma patients. The present study demonstrated that SNHG12-miR-195-SOX5 feedback loop exerted a crucial role in the regulation of glioma cells’ malignant progression. |
---|