Cargando…
Stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma
Stromal-epithelial lactate shuttle is an essential process to support fast-growing tumor cells, however, the underlying mechanism remains ambiguous. Interleukin-1β (IL-1β), which is a key node gene in both stromal and epithelial cells of oral squamous cell carcinoma (OSCC), may participate in this m...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752169/ https://www.ncbi.nlm.nih.gov/pubmed/29207019 http://dx.doi.org/10.3892/ijmm.2017.3267 |
_version_ | 1783290084063182848 |
---|---|
author | Wu, Jie Hong, Yun Wu, Tong Wang, Juan Chen, Xiaobing Wang, Zhi Cheng, Bin Xia, Juan |
author_facet | Wu, Jie Hong, Yun Wu, Tong Wang, Juan Chen, Xiaobing Wang, Zhi Cheng, Bin Xia, Juan |
author_sort | Wu, Jie |
collection | PubMed |
description | Stromal-epithelial lactate shuttle is an essential process to support fast-growing tumor cells, however, the underlying mechanism remains ambiguous. Interleukin-1β (IL-1β), which is a key node gene in both stromal and epithelial cells of oral squamous cell carcinoma (OSCC), may participate in this metabolic reprogramming. In the present study, anaerobic glycolysis of cancer-associated fibroblasts (CAFs) was evaluated and the role of IL-1β in regulating stromal-epithelial lactate shuttle was determined. A co-culture system of primary fibroblasts and OSCC cell lines (CAL27, UM1 or SCC25) was created to investigate the stromal-epithelial interaction. α-smooth muscle actin (α-SMA) expression of fibroblasts, IL-1β expression and cell proliferation of OSCC cells, and a series of glycolytic genes were measured. Recombinant IL-1β treatment and IL-1β knockdown in UM1 cells were also used to evaluate the effect of IL-1β. Expression of α-SMA, glucose transporter 1, hexokinase 2, lactic dehydrogenase and mono-carboxylate transporter (MCT) 4 were significantly overexpressed in activated fibroblasts, while IL-1β and MCT1 were upregulated in OSCC cells, indicating enhanced glycolysis in cells of the tumor stroma and a lactate shuttle to the tumor cells. Furthermore, exogenous IL-1β induced fibroblasts to present similar expression profiles as that in the co-culture system. Silencing of IL-1β significantly abrogated the regulatory effect of UM1 cells on stromal glycolysis. Additionally, carboxy-fluorescein succinimidyl ester cell tracing indicated that OSCC cell proliferation was accelerated during co-cultivation with fibroblasts. These results indicate that tumor-derived IL-1β enhanced stromal glycolysis and induced one-way lactate flow from the tumor mesenchyme to transformed epithelium, which promotes OSCC proliferation. |
format | Online Article Text |
id | pubmed-5752169 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-57521692018-01-11 Stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma Wu, Jie Hong, Yun Wu, Tong Wang, Juan Chen, Xiaobing Wang, Zhi Cheng, Bin Xia, Juan Int J Mol Med Articles Stromal-epithelial lactate shuttle is an essential process to support fast-growing tumor cells, however, the underlying mechanism remains ambiguous. Interleukin-1β (IL-1β), which is a key node gene in both stromal and epithelial cells of oral squamous cell carcinoma (OSCC), may participate in this metabolic reprogramming. In the present study, anaerobic glycolysis of cancer-associated fibroblasts (CAFs) was evaluated and the role of IL-1β in regulating stromal-epithelial lactate shuttle was determined. A co-culture system of primary fibroblasts and OSCC cell lines (CAL27, UM1 or SCC25) was created to investigate the stromal-epithelial interaction. α-smooth muscle actin (α-SMA) expression of fibroblasts, IL-1β expression and cell proliferation of OSCC cells, and a series of glycolytic genes were measured. Recombinant IL-1β treatment and IL-1β knockdown in UM1 cells were also used to evaluate the effect of IL-1β. Expression of α-SMA, glucose transporter 1, hexokinase 2, lactic dehydrogenase and mono-carboxylate transporter (MCT) 4 were significantly overexpressed in activated fibroblasts, while IL-1β and MCT1 were upregulated in OSCC cells, indicating enhanced glycolysis in cells of the tumor stroma and a lactate shuttle to the tumor cells. Furthermore, exogenous IL-1β induced fibroblasts to present similar expression profiles as that in the co-culture system. Silencing of IL-1β significantly abrogated the regulatory effect of UM1 cells on stromal glycolysis. Additionally, carboxy-fluorescein succinimidyl ester cell tracing indicated that OSCC cell proliferation was accelerated during co-cultivation with fibroblasts. These results indicate that tumor-derived IL-1β enhanced stromal glycolysis and induced one-way lactate flow from the tumor mesenchyme to transformed epithelium, which promotes OSCC proliferation. D.A. Spandidos 2018-02 2017-11-17 /pmc/articles/PMC5752169/ /pubmed/29207019 http://dx.doi.org/10.3892/ijmm.2017.3267 Text en Copyright: © Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Wu, Jie Hong, Yun Wu, Tong Wang, Juan Chen, Xiaobing Wang, Zhi Cheng, Bin Xia, Juan Stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma |
title | Stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma |
title_full | Stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma |
title_fullStr | Stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma |
title_full_unstemmed | Stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma |
title_short | Stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma |
title_sort | stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752169/ https://www.ncbi.nlm.nih.gov/pubmed/29207019 http://dx.doi.org/10.3892/ijmm.2017.3267 |
work_keys_str_mv | AT wujie stromalepitheliallactateshuttleinducedbytumorderivedinterleukin1bpromotescellproliferationinoralsquamouscellcarcinoma AT hongyun stromalepitheliallactateshuttleinducedbytumorderivedinterleukin1bpromotescellproliferationinoralsquamouscellcarcinoma AT wutong stromalepitheliallactateshuttleinducedbytumorderivedinterleukin1bpromotescellproliferationinoralsquamouscellcarcinoma AT wangjuan stromalepitheliallactateshuttleinducedbytumorderivedinterleukin1bpromotescellproliferationinoralsquamouscellcarcinoma AT chenxiaobing stromalepitheliallactateshuttleinducedbytumorderivedinterleukin1bpromotescellproliferationinoralsquamouscellcarcinoma AT wangzhi stromalepitheliallactateshuttleinducedbytumorderivedinterleukin1bpromotescellproliferationinoralsquamouscellcarcinoma AT chengbin stromalepitheliallactateshuttleinducedbytumorderivedinterleukin1bpromotescellproliferationinoralsquamouscellcarcinoma AT xiajuan stromalepitheliallactateshuttleinducedbytumorderivedinterleukin1bpromotescellproliferationinoralsquamouscellcarcinoma |