Cargando…

Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation

Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function rem...

Descripción completa

Detalles Bibliográficos
Autores principales: Nabeebaccus, Adam A., Zoccarato, Anna, Hafstad, Anne D., Santos, Celio X.C., Aasum, Ellen, Brewer, Alison C., Zhang, Min, Beretta, Matteo, Yin, Xiaoke, West, James A., Schröder, Katrin, Griffin, Julian L., Eykyn, Thomas R., Abel, E. Dale, Mayr, Manuel, Shah, Ajay M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752273/
https://www.ncbi.nlm.nih.gov/pubmed/29263294
http://dx.doi.org/10.1172/jci.insight.96184
_version_ 1783290097619173376
author Nabeebaccus, Adam A.
Zoccarato, Anna
Hafstad, Anne D.
Santos, Celio X.C.
Aasum, Ellen
Brewer, Alison C.
Zhang, Min
Beretta, Matteo
Yin, Xiaoke
West, James A.
Schröder, Katrin
Griffin, Julian L.
Eykyn, Thomas R.
Abel, E. Dale
Mayr, Manuel
Shah, Ajay M.
author_facet Nabeebaccus, Adam A.
Zoccarato, Anna
Hafstad, Anne D.
Santos, Celio X.C.
Aasum, Ellen
Brewer, Alison C.
Zhang, Min
Beretta, Matteo
Yin, Xiaoke
West, James A.
Schröder, Katrin
Griffin, Julian L.
Eykyn, Thomas R.
Abel, E. Dale
Mayr, Manuel
Shah, Ajay M.
author_sort Nabeebaccus, Adam A.
collection PubMed
description Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4–dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial.
format Online
Article
Text
id pubmed-5752273
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Society for Clinical Investigation
record_format MEDLINE/PubMed
spelling pubmed-57522732018-01-11 Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation Nabeebaccus, Adam A. Zoccarato, Anna Hafstad, Anne D. Santos, Celio X.C. Aasum, Ellen Brewer, Alison C. Zhang, Min Beretta, Matteo Yin, Xiaoke West, James A. Schröder, Katrin Griffin, Julian L. Eykyn, Thomas R. Abel, E. Dale Mayr, Manuel Shah, Ajay M. JCI Insight Research Article Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4–dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial. American Society for Clinical Investigation 2017-12-21 /pmc/articles/PMC5752273/ /pubmed/29263294 http://dx.doi.org/10.1172/jci.insight.96184 Text en Copyright © 2017 Nabeebaccus et al. http://creativecommons.org/licenses/by/4.0/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Research Article
Nabeebaccus, Adam A.
Zoccarato, Anna
Hafstad, Anne D.
Santos, Celio X.C.
Aasum, Ellen
Brewer, Alison C.
Zhang, Min
Beretta, Matteo
Yin, Xiaoke
West, James A.
Schröder, Katrin
Griffin, Julian L.
Eykyn, Thomas R.
Abel, E. Dale
Mayr, Manuel
Shah, Ajay M.
Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation
title Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation
title_full Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation
title_fullStr Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation
title_full_unstemmed Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation
title_short Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation
title_sort nox4 reprograms cardiac substrate metabolism via protein o-glcnacylation to enhance stress adaptation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752273/
https://www.ncbi.nlm.nih.gov/pubmed/29263294
http://dx.doi.org/10.1172/jci.insight.96184
work_keys_str_mv AT nabeebaccusadama nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT zoccaratoanna nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT hafstadanned nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT santoscelioxc nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT aasumellen nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT breweralisonc nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT zhangmin nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT berettamatteo nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT yinxiaoke nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT westjamesa nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT schroderkatrin nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT griffinjulianl nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT eykynthomasr nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT abeledale nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT mayrmanuel nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation
AT shahajaym nox4reprogramscardiacsubstratemetabolismviaproteinoglcnacylationtoenhancestressadaptation