Cargando…
High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification
In our efforts to determine the patterns of expression and subcellular localization of Drosophila RNAs on a genome-wide basis, and in a variety of tissues, we have developed numerous modifications and improvements to our original fluorescent in situ hybridization (FISH) protocol. To facilitate throu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752429/ https://www.ncbi.nlm.nih.gov/pubmed/29155736 http://dx.doi.org/10.3791/56281 |
_version_ | 1783290104180113408 |
---|---|
author | Jandura, Allison Hu, Jack Wilk, Ronit Krause, Henry M. |
author_facet | Jandura, Allison Hu, Jack Wilk, Ronit Krause, Henry M. |
author_sort | Jandura, Allison |
collection | PubMed |
description | In our efforts to determine the patterns of expression and subcellular localization of Drosophila RNAs on a genome-wide basis, and in a variety of tissues, we have developed numerous modifications and improvements to our original fluorescent in situ hybridization (FISH) protocol. To facilitate throughput and cost effectiveness, all steps, from probe generation to signal detection, are performed using exon 96-well microtiter plates. Digoxygenin (DIG)-labelled antisense RNA probes are produced using either cDNA clones or genomic DNA as templates. After tissue fixation and permeabilization, probes are hybridized to transcripts of interest and then detected using a succession of anti-DIG antibody conjugated to biotin, streptavidin conjugated to horseradish peroxidase (HRP) and fluorescently conjugated tyramide, which in the presence of HRP, produces a highly reactive intermediate that binds to electron dense regions of immediately adjacent proteins. These amplification and localization steps produce a robust and highly localized signal that facilitates both cellular and subcellular transcript localization. The protocols provided have been optimized to produce highly specific signals in a variety of tissues and developmental stages. References are also provided for additional variations that allow the simultaneous detection of multiple transcripts, or transcripts and proteins, at the same time. |
format | Online Article Text |
id | pubmed-5752429 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MyJove Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-57524292018-01-19 High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification Jandura, Allison Hu, Jack Wilk, Ronit Krause, Henry M. J Vis Exp Genetics In our efforts to determine the patterns of expression and subcellular localization of Drosophila RNAs on a genome-wide basis, and in a variety of tissues, we have developed numerous modifications and improvements to our original fluorescent in situ hybridization (FISH) protocol. To facilitate throughput and cost effectiveness, all steps, from probe generation to signal detection, are performed using exon 96-well microtiter plates. Digoxygenin (DIG)-labelled antisense RNA probes are produced using either cDNA clones or genomic DNA as templates. After tissue fixation and permeabilization, probes are hybridized to transcripts of interest and then detected using a succession of anti-DIG antibody conjugated to biotin, streptavidin conjugated to horseradish peroxidase (HRP) and fluorescently conjugated tyramide, which in the presence of HRP, produces a highly reactive intermediate that binds to electron dense regions of immediately adjacent proteins. These amplification and localization steps produce a robust and highly localized signal that facilitates both cellular and subcellular transcript localization. The protocols provided have been optimized to produce highly specific signals in a variety of tissues and developmental stages. References are also provided for additional variations that allow the simultaneous detection of multiple transcripts, or transcripts and proteins, at the same time. MyJove Corporation 2017-10-19 /pmc/articles/PMC5752429/ /pubmed/29155736 http://dx.doi.org/10.3791/56281 Text en Copyright © 2017, Journal of Visualized Experiments http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Genetics Jandura, Allison Hu, Jack Wilk, Ronit Krause, Henry M. High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification |
title | High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification |
title_full | High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification |
title_fullStr | High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification |
title_full_unstemmed | High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification |
title_short | High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification |
title_sort | high resolution fluorescent in situ hybridization in drosophila embryos and tissues using tyramide signal amplification |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752429/ https://www.ncbi.nlm.nih.gov/pubmed/29155736 http://dx.doi.org/10.3791/56281 |
work_keys_str_mv | AT janduraallison highresolutionfluorescentinsituhybridizationindrosophilaembryosandtissuesusingtyramidesignalamplification AT hujack highresolutionfluorescentinsituhybridizationindrosophilaembryosandtissuesusingtyramidesignalamplification AT wilkronit highresolutionfluorescentinsituhybridizationindrosophilaembryosandtissuesusingtyramidesignalamplification AT krausehenrym highresolutionfluorescentinsituhybridizationindrosophilaembryosandtissuesusingtyramidesignalamplification |