Cargando…
Downregulation of miR-221-3p and upregulation of its target gene PARP1 are prognostic biomarkers for triple negative breast cancer patients and associated with poor prognosis
The purpose of this study was to identify microRNAs (miRNAs) closely associated with the prognosis of triple-negative breast cancer (TNBC) and their possible targets. This study recruited 125 early-stage TNBC patients, including 40 cases in the experimental group (20 cases with poor prognoses vs. 20...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752475/ https://www.ncbi.nlm.nih.gov/pubmed/29312562 http://dx.doi.org/10.18632/oncotarget.21561 |
Sumario: | The purpose of this study was to identify microRNAs (miRNAs) closely associated with the prognosis of triple-negative breast cancer (TNBC) and their possible targets. This study recruited 125 early-stage TNBC patients, including 40 cases in the experimental group (20 cases with poor prognoses vs. 20 cases with good prognoses) and 85 cases in the validation group (27 cases with poor prognoses vs. 58 cases with good prognoses). In the experimental group, miRNA microarray showed 34 differentially expressed miRNAs in patients with different prognoses. We selected 5 miRNAs for validation. The differential expression of miR-221-3p was further verified in the experimental and validation groups using real-time polymerase chain reaction (PCR). High miR-221-3p expression was associated with better 5-year disease-free survival (DFS) (HR = 0.480; 95% CI, 0.263–0.879; p = 0.017) of TNBC patients. High expression of its target gene PARP1 predicted poorer 5-year DFS (HR = 2.236, 95% CI, 1.209-4.136, p = 0.010). MiR-221-3p down-regulated PARP1 by targeting its 3'-untranslated region. In conclusion, low miR-221-3p expression may contribute to the poor outcome of TNBC patients through regulating PARP1. MiR-221-3p likely plays a role as a PARP1 inhibitor by directly regulating PARP1 expression, thereby affecting the prognoses of TNBC patients. |
---|