Cargando…

A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia

Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Su-In, Celik, Safiye, Logsdon, Benjamin A., Lundberg, Scott M., Martins, Timothy J., Oehler, Vivian G., Estey, Elihu H., Miller, Chris P., Chien, Sylvia, Dai, Jin, Saxena, Akanksha, Blau, C. Anthony, Becker, Pamela S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752671/
https://www.ncbi.nlm.nih.gov/pubmed/29298978
http://dx.doi.org/10.1038/s41467-017-02465-5
_version_ 1783290143028805632
author Lee, Su-In
Celik, Safiye
Logsdon, Benjamin A.
Lundberg, Scott M.
Martins, Timothy J.
Oehler, Vivian G.
Estey, Elihu H.
Miller, Chris P.
Chien, Sylvia
Dai, Jin
Saxena, Akanksha
Blau, C. Anthony
Becker, Pamela S.
author_facet Lee, Su-In
Celik, Safiye
Logsdon, Benjamin A.
Lundberg, Scott M.
Martins, Timothy J.
Oehler, Vivian G.
Estey, Elihu H.
Miller, Chris P.
Chien, Sylvia
Dai, Jin
Saxena, Akanksha
Blau, C. Anthony
Becker, Pamela S.
author_sort Lee, Su-In
collection PubMed
description Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing: data from 30 AML patients including genome-wide gene expression profiles and in vitro sensitivity to 160 chemotherapy drugs, a computational method to identify reliable gene expression markers for drug sensitivity by incorporating multi-omic prior information relevant to each gene’s potential to drive cancer. We show that our method outperforms several state-of-the-art approaches in identifying molecular markers replicated in validation data and predicting drug sensitivity accurately. Finally, we identify SMARCA4 as a marker and driver of sensitivity to topoisomerase II inhibitors, mitoxantrone, and etoposide, in AML by showing that cell lines transduced to have high SMARCA4 expression reveal dramatically increased sensitivity to these agents.
format Online
Article
Text
id pubmed-5752671
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-57526712018-01-13 A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia Lee, Su-In Celik, Safiye Logsdon, Benjamin A. Lundberg, Scott M. Martins, Timothy J. Oehler, Vivian G. Estey, Elihu H. Miller, Chris P. Chien, Sylvia Dai, Jin Saxena, Akanksha Blau, C. Anthony Becker, Pamela S. Nat Commun Article Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing: data from 30 AML patients including genome-wide gene expression profiles and in vitro sensitivity to 160 chemotherapy drugs, a computational method to identify reliable gene expression markers for drug sensitivity by incorporating multi-omic prior information relevant to each gene’s potential to drive cancer. We show that our method outperforms several state-of-the-art approaches in identifying molecular markers replicated in validation data and predicting drug sensitivity accurately. Finally, we identify SMARCA4 as a marker and driver of sensitivity to topoisomerase II inhibitors, mitoxantrone, and etoposide, in AML by showing that cell lines transduced to have high SMARCA4 expression reveal dramatically increased sensitivity to these agents. Nature Publishing Group UK 2018-01-03 /pmc/articles/PMC5752671/ /pubmed/29298978 http://dx.doi.org/10.1038/s41467-017-02465-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Lee, Su-In
Celik, Safiye
Logsdon, Benjamin A.
Lundberg, Scott M.
Martins, Timothy J.
Oehler, Vivian G.
Estey, Elihu H.
Miller, Chris P.
Chien, Sylvia
Dai, Jin
Saxena, Akanksha
Blau, C. Anthony
Becker, Pamela S.
A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title_full A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title_fullStr A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title_full_unstemmed A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title_short A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title_sort machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752671/
https://www.ncbi.nlm.nih.gov/pubmed/29298978
http://dx.doi.org/10.1038/s41467-017-02465-5
work_keys_str_mv AT leesuin amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT celiksafiye amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT logsdonbenjamina amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT lundbergscottm amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT martinstimothyj amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT oehlerviviang amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT esteyelihuh amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT millerchrisp amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT chiensylvia amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT daijin amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT saxenaakanksha amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT blaucanthony amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT beckerpamelas amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT leesuin machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT celiksafiye machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT logsdonbenjamina machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT lundbergscottm machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT martinstimothyj machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT oehlerviviang machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT esteyelihuh machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT millerchrisp machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT chiensylvia machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT daijin machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT saxenaakanksha machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT blaucanthony machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT beckerpamelas machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia