Cargando…
A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752671/ https://www.ncbi.nlm.nih.gov/pubmed/29298978 http://dx.doi.org/10.1038/s41467-017-02465-5 |
_version_ | 1783290143028805632 |
---|---|
author | Lee, Su-In Celik, Safiye Logsdon, Benjamin A. Lundberg, Scott M. Martins, Timothy J. Oehler, Vivian G. Estey, Elihu H. Miller, Chris P. Chien, Sylvia Dai, Jin Saxena, Akanksha Blau, C. Anthony Becker, Pamela S. |
author_facet | Lee, Su-In Celik, Safiye Logsdon, Benjamin A. Lundberg, Scott M. Martins, Timothy J. Oehler, Vivian G. Estey, Elihu H. Miller, Chris P. Chien, Sylvia Dai, Jin Saxena, Akanksha Blau, C. Anthony Becker, Pamela S. |
author_sort | Lee, Su-In |
collection | PubMed |
description | Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing: data from 30 AML patients including genome-wide gene expression profiles and in vitro sensitivity to 160 chemotherapy drugs, a computational method to identify reliable gene expression markers for drug sensitivity by incorporating multi-omic prior information relevant to each gene’s potential to drive cancer. We show that our method outperforms several state-of-the-art approaches in identifying molecular markers replicated in validation data and predicting drug sensitivity accurately. Finally, we identify SMARCA4 as a marker and driver of sensitivity to topoisomerase II inhibitors, mitoxantrone, and etoposide, in AML by showing that cell lines transduced to have high SMARCA4 expression reveal dramatically increased sensitivity to these agents. |
format | Online Article Text |
id | pubmed-5752671 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-57526712018-01-13 A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia Lee, Su-In Celik, Safiye Logsdon, Benjamin A. Lundberg, Scott M. Martins, Timothy J. Oehler, Vivian G. Estey, Elihu H. Miller, Chris P. Chien, Sylvia Dai, Jin Saxena, Akanksha Blau, C. Anthony Becker, Pamela S. Nat Commun Article Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing: data from 30 AML patients including genome-wide gene expression profiles and in vitro sensitivity to 160 chemotherapy drugs, a computational method to identify reliable gene expression markers for drug sensitivity by incorporating multi-omic prior information relevant to each gene’s potential to drive cancer. We show that our method outperforms several state-of-the-art approaches in identifying molecular markers replicated in validation data and predicting drug sensitivity accurately. Finally, we identify SMARCA4 as a marker and driver of sensitivity to topoisomerase II inhibitors, mitoxantrone, and etoposide, in AML by showing that cell lines transduced to have high SMARCA4 expression reveal dramatically increased sensitivity to these agents. Nature Publishing Group UK 2018-01-03 /pmc/articles/PMC5752671/ /pubmed/29298978 http://dx.doi.org/10.1038/s41467-017-02465-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lee, Su-In Celik, Safiye Logsdon, Benjamin A. Lundberg, Scott M. Martins, Timothy J. Oehler, Vivian G. Estey, Elihu H. Miller, Chris P. Chien, Sylvia Dai, Jin Saxena, Akanksha Blau, C. Anthony Becker, Pamela S. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia |
title | A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia |
title_full | A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia |
title_fullStr | A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia |
title_full_unstemmed | A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia |
title_short | A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia |
title_sort | machine learning approach to integrate big data for precision medicine in acute myeloid leukemia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752671/ https://www.ncbi.nlm.nih.gov/pubmed/29298978 http://dx.doi.org/10.1038/s41467-017-02465-5 |
work_keys_str_mv | AT leesuin amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT celiksafiye amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT logsdonbenjamina amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT lundbergscottm amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT martinstimothyj amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT oehlerviviang amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT esteyelihuh amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT millerchrisp amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT chiensylvia amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT daijin amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT saxenaakanksha amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT blaucanthony amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT beckerpamelas amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT leesuin machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT celiksafiye machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT logsdonbenjamina machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT lundbergscottm machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT martinstimothyj machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT oehlerviviang machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT esteyelihuh machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT millerchrisp machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT chiensylvia machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT daijin machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT saxenaakanksha machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT blaucanthony machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia AT beckerpamelas machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia |