Cargando…

Electrically reversible cracks in an intermetallic film controlled by an electric field

Cracks in solid-state materials are typically irreversible. Here we report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresis...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Z. Q., Liu, J. H., Biegalski, M. D., Hu, J.-M., Shang, S. L., Ji, Y., Wang, J. M., Hsu, S. L., Wong, A. T., Cordill, M. J., Gludovatz, B., Marker, C., Yan, H., Feng, Z. X., You, L., Lin, M. W., Ward, T. Z., Liu, Z. K., Jiang, C. B., Chen, L. Q., Ritchie, R. O., Christen, H. M., Ramesh, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752679/
https://www.ncbi.nlm.nih.gov/pubmed/29298986
http://dx.doi.org/10.1038/s41467-017-02454-8
Descripción
Sumario:Cracks in solid-state materials are typically irreversible. Here we report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on–off ratio of more than 10(8) is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks can reach over 10(7) cycles under 10-μs pulses, without catastrophic failure of the film.