Cargando…

Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems

In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, An, Cao, Yang, Shi, Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752822/
https://www.ncbi.nlm.nih.gov/pubmed/29367814
http://dx.doi.org/10.1186/s13660-017-1593-7
_version_ 1783290173575921664
author Wang, An
Cao, Yang
Shi, Quan
author_facet Wang, An
Cao, Yang
Shi, Quan
author_sort Wang, An
collection PubMed
description In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text] -matrix, respectively.
format Online
Article
Text
id pubmed-5752822
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-57528222018-01-22 Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems Wang, An Cao, Yang Shi, Quan J Inequal Appl Research In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text] -matrix, respectively. Springer International Publishing 2018-01-03 2018 /pmc/articles/PMC5752822/ /pubmed/29367814 http://dx.doi.org/10.1186/s13660-017-1593-7 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Wang, An
Cao, Yang
Shi, Quan
Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems
title Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems
title_full Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems
title_fullStr Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems
title_full_unstemmed Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems
title_short Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems
title_sort convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752822/
https://www.ncbi.nlm.nih.gov/pubmed/29367814
http://dx.doi.org/10.1186/s13660-017-1593-7
work_keys_str_mv AT wangan convergenceanalysisofmodulusbasedmatrixsplittingiterativemethodsforimplicitcomplementarityproblems
AT caoyang convergenceanalysisofmodulusbasedmatrixsplittingiterativemethodsforimplicitcomplementarityproblems
AT shiquan convergenceanalysisofmodulusbasedmatrixsplittingiterativemethodsforimplicitcomplementarityproblems