Cargando…
Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems
In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented...
Autores principales: | Wang, An, Cao, Yang, Shi, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752822/ https://www.ncbi.nlm.nih.gov/pubmed/29367814 http://dx.doi.org/10.1186/s13660-017-1593-7 |
Ejemplares similares
-
Iterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces
por: Tang, Yuchao, et al.
Publicado: (2016) -
On a Cubically Convergent Iterative Method for Matrix Sign
por: Sharifi, M., et al.
Publicado: (2015) -
On the preconditioned GAOR method for a linear complementarity problem with an M-matrix
por: Miao, Shu-Xin, et al.
Publicado: (2018) -
Complementarity problems
por: Isac, George
Publicado: (1992) -
Editorial: Enaction and Ecological Psychology: Convergences and Complementarities
por: McGann, Marek, et al.
Publicado: (2020)