Cargando…
ProteomicsDB
ProteomicsDB (https://www.ProteomicsDB.org) is a protein-centric in-memory database for the exploration of large collections of quantitative mass spectrometry-based proteomics data. ProteomicsDB was first released in 2014 to enable the interactive exploration of the first draft of the human proteome...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753189/ https://www.ncbi.nlm.nih.gov/pubmed/29106664 http://dx.doi.org/10.1093/nar/gkx1029 |
_version_ | 1783290225729994752 |
---|---|
author | Schmidt, Tobias Samaras, Patroklos Frejno, Martin Gessulat, Siegfried Barnert, Maximilian Kienegger, Harald Krcmar, Helmut Schlegl, Judith Ehrlich, Hans-Christian Aiche, Stephan Kuster, Bernhard Wilhelm, Mathias |
author_facet | Schmidt, Tobias Samaras, Patroklos Frejno, Martin Gessulat, Siegfried Barnert, Maximilian Kienegger, Harald Krcmar, Helmut Schlegl, Judith Ehrlich, Hans-Christian Aiche, Stephan Kuster, Bernhard Wilhelm, Mathias |
author_sort | Schmidt, Tobias |
collection | PubMed |
description | ProteomicsDB (https://www.ProteomicsDB.org) is a protein-centric in-memory database for the exploration of large collections of quantitative mass spectrometry-based proteomics data. ProteomicsDB was first released in 2014 to enable the interactive exploration of the first draft of the human proteome. To date, it contains quantitative data from 78 projects totalling over 19k LC–MS/MS experiments. A standardized analysis pipeline enables comparisons between multiple datasets to facilitate the exploration of protein expression across hundreds of tissues, body fluids and cell lines. We recently extended the data model to enable the storage and integrated visualization of other quantitative omics data. This includes transcriptomics data from e.g. NCBI GEO, protein–protein interaction information from STRING, functional annotations from KEGG, drug-sensitivity/selectivity data from several public sources and reference mass spectra from the ProteomeTools project. The extended functionality transforms ProteomicsDB into a multi-purpose resource connecting quantification and meta-data for each protein. The rich user interface helps researchers to navigate all data sources in either a protein-centric or multi-protein-centric manner. Several options are available to download data manually, while our application programming interface enables accessing quantitative data systematically. |
format | Online Article Text |
id | pubmed-5753189 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-57531892018-01-05 ProteomicsDB Schmidt, Tobias Samaras, Patroklos Frejno, Martin Gessulat, Siegfried Barnert, Maximilian Kienegger, Harald Krcmar, Helmut Schlegl, Judith Ehrlich, Hans-Christian Aiche, Stephan Kuster, Bernhard Wilhelm, Mathias Nucleic Acids Res Database Issue ProteomicsDB (https://www.ProteomicsDB.org) is a protein-centric in-memory database for the exploration of large collections of quantitative mass spectrometry-based proteomics data. ProteomicsDB was first released in 2014 to enable the interactive exploration of the first draft of the human proteome. To date, it contains quantitative data from 78 projects totalling over 19k LC–MS/MS experiments. A standardized analysis pipeline enables comparisons between multiple datasets to facilitate the exploration of protein expression across hundreds of tissues, body fluids and cell lines. We recently extended the data model to enable the storage and integrated visualization of other quantitative omics data. This includes transcriptomics data from e.g. NCBI GEO, protein–protein interaction information from STRING, functional annotations from KEGG, drug-sensitivity/selectivity data from several public sources and reference mass spectra from the ProteomeTools project. The extended functionality transforms ProteomicsDB into a multi-purpose resource connecting quantification and meta-data for each protein. The rich user interface helps researchers to navigate all data sources in either a protein-centric or multi-protein-centric manner. Several options are available to download data manually, while our application programming interface enables accessing quantitative data systematically. Oxford University Press 2018-01-04 2017-11-02 /pmc/articles/PMC5753189/ /pubmed/29106664 http://dx.doi.org/10.1093/nar/gkx1029 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Database Issue Schmidt, Tobias Samaras, Patroklos Frejno, Martin Gessulat, Siegfried Barnert, Maximilian Kienegger, Harald Krcmar, Helmut Schlegl, Judith Ehrlich, Hans-Christian Aiche, Stephan Kuster, Bernhard Wilhelm, Mathias ProteomicsDB |
title | ProteomicsDB |
title_full | ProteomicsDB |
title_fullStr | ProteomicsDB |
title_full_unstemmed | ProteomicsDB |
title_short | ProteomicsDB |
title_sort | proteomicsdb |
topic | Database Issue |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753189/ https://www.ncbi.nlm.nih.gov/pubmed/29106664 http://dx.doi.org/10.1093/nar/gkx1029 |
work_keys_str_mv | AT schmidttobias proteomicsdb AT samaraspatroklos proteomicsdb AT frejnomartin proteomicsdb AT gessulatsiegfried proteomicsdb AT barnertmaximilian proteomicsdb AT kieneggerharald proteomicsdb AT krcmarhelmut proteomicsdb AT schlegljudith proteomicsdb AT ehrlichhanschristian proteomicsdb AT aichestephan proteomicsdb AT kusterbernhard proteomicsdb AT wilhelmmathias proteomicsdb |