Cargando…

Comparison of genetic variation between northern and southern populations of Lilium cernuum (Liliaceae): Implications for Pleistocene refugia

The so-called “Baekdudaegan” (BDDG), a mountain range that stretches along the Korean Peninsula, has been recently proposed as a major “southern” glacial refugium for boreal or temperate plant species based on palaeoecological and, especially, genetic data. Genetic studies comparing genetic variatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Mi Yoon, Vu, Son Hai, López-Pujol, Jordi, Herrando-Moraira, Sonia, Son, Sungwon, Suh, Gang Uk, Le, Hoa Thi Quynh, Chung, Myong Gi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5754063/
https://www.ncbi.nlm.nih.gov/pubmed/29300767
http://dx.doi.org/10.1371/journal.pone.0190520
Descripción
Sumario:The so-called “Baekdudaegan” (BDDG), a mountain range that stretches along the Korean Peninsula, has been recently proposed as a major “southern” glacial refugium for boreal or temperate plant species based on palaeoecological and, especially, genetic data. Genetic studies comparing genetic variation between population occurring on the BDDG and more northern ones (i.e. in NE China and/or in Russian Far East) are, however, still too few to draw firm conclusions on the role of the BDDG as a refugium and a source for possible northward post-glacial recolonizations. In order to fill this gap, we selected a boreal/temperate herb, Lilium cernuum, and compared levels of allozyme-based genetic diversity of five populations from NE China with five populations from South Korea (home of its hypothesized refuge areas). As a complementary tool, we used the maximum entropy algorithm implemented in MaxEnt to infer the species’ potential distribution for the present time, which was projected to different past climate scenarios for the Last Glacial Maximum (LGM). Permutation tests revealed that Korean populations harbored significantly higher levels of within-population genetic variation than those from NE China (expected heterozygosity = 0.173 vs. 0.095, respectively). Our results suggest that the lowered levels of genetic diversity in NE Chinese populations might be due to founder effects associated with post-glacial migration from southern regions. Congruent with genetic data, past distribution models showed higher probability of occurrence in southern ranges than in northern ones during the LGM. In addition, a positive correlation was detected between the expected heterozygosity and environmental LGM suitability. From a conservation perspective, our results further suggest that the southern populations in South Korea may be particularly worthy of protection.